新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 利用G类放大器和电荷泵技术在增强型放大器设计中以最少元件获得

利用G类放大器和电荷泵技术在增强型放大器设计中以最少元件获得

作者:时间:2013-11-14来源:网络收藏
摘要:Maxim采用创新G类技术和基于的架构,推出了增强型放大器。这些可理想用于要求高压输出的便携应用,而不会牺牲效率或PCB空间。本应用笔记说明在扬声器功率驱动电路中使用和G类技术的优势。文中以MAX9730和MAX9788扬声器放大器作为设计实例。


概述

便携音频应用中存在一个共同的问题,即扬声器放大器的供电电压有限。这些音频系统通常采用锂离子(Li+)电池供电,输出额定值为3.7V。虽然3.7V电源足以保证系统的大多数元件正常工作,但是,为了提供令人满意的声压,扬声器放大器需要更高的供电电压。因此,大多数扬声器放大器的功率级都采用桥接负载配置,以便在扬声器上产生两倍的电源电压。

多数情况下使扬声器电源电压加倍就足以满足要求,但有些应用需要更大的输出功率。例如:压电扬声器(需要较高的电压驱动)或需要较高声压的系统(例如GPS设备)。针对这些音频应用的需求,唯一的解决方案是提升电源电压,通常需要一个单独的DC-DC升压转换器,从而增加系统的成本和复杂度。

MAX9730和MAX9788利用提升电源电压,以解决电源电压问题。MAX9730适用传统的动圈扬声器,而MAX9788适用于陶瓷扬声器。

创新的电荷泵

与标准的5V放大器相比,MAX9730和MAX9788使用电荷泵使输出电平加倍。电荷泵完全集成在放大器内部,仅需两个外部电容,可以使用0603微型表面贴装电容。集成电荷泵产生幅度与电源电压相等的负电压,使供电电压加倍,最终得到加倍的输出摆幅。

与DC-DC升压转换器不同,电荷泵具有较大的输出阻抗,带负载时会导致负电源跌落。MAX9730和MAX9788的设计能够确保电荷泵的输出阻抗足够低,以提供足够的输出功率。传统放大器采用3.7V供电时,可以向8Ω负载提供700mW的驱动,MAX9730在同等条件下可以提供1.3W输出驱动。

独特的G类技术

由于MAX9730和MAX9788用10V放大器替代手持设备中常见的5V放大器,保持高效率就成为延长电池寿命的关键。虽然D类技术具有高效率并常用于手持设备,但它不符合陶瓷扬声器的驱动要求。设计挑战非常明确 — 陶瓷扬声器需要其它驱动技术。,一种并不知名的放大器技术,由于其完美的适应性被推向市场。
电荷放大器相关文章:电荷放大器原理

上一页 1 2 下一页

关键词: G类放大器 电荷泵 放大器设计

评论


相关推荐

技术专区

关闭