新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 跨阻型放大器应用指南

跨阻型放大器应用指南

作者:时间:2012-12-06来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/185540.htm

TIA 全称为trans-impedance amplifier. 也就是.

在需要电流转电压的应用场合, 如检测微弱光电流信号的场合, 通常需要用到. TI有一系列的跨阻放大器,如OPA656,OPA657,OPA843,OPA84,LMH6629 等等. TI 该产品系列主要的优势在于低噪声, 能支持反馈高增益下宽带应用. 这些特点在微弱光检测的场合是非常关键的. 另外TI 的产品是一系列的, 在不同的指标要求如带宽升级时可以很方便地找到pin-pin 兼容的产品.

本文介绍了高速TIA 应用中关注的指标及计算过程. 另外介绍了在光检测应用下常见问题的解决.

2 TIA 应用概论

在TIA 应用时, 由于输入信号是电流, 能够应用于这种场合的跨阻放大通常需要具备较低的电流噪声和电压噪声. 比较典型的两个器件是:OPA657(1.6GHz,输入电流噪声1.8 fA/rtHz, 输入电压噪声4.8nV/rtHz), OPA847(3.9GHz, 输入电流噪声2.5pA/rtHz, 输入电压噪声0.85nV/rtHz). 这两款都是

Decompensated 放大器.

Decompensated 放大器特点如下:

Decompensated 放大器指的是非单位增益稳定的放大器, 如OPA657 最小稳定增益是7V/V,OPA847 则为12V/V.

其波特图和普通放大器比较如下:

和单位稳定放大器相比, 其特点如下:

带宽更宽, 尤其是小信号下的带宽更宽, Slew rate 更快, 以及更大的GBW. 另外一般来讲,decompensated 的放大器能够提供更好的电压噪声.

所以在大增益的跨阻放大且要求一定带宽的场合, 使用decompensated 放大器要比单位增益稳定放大器有优势.

3 TIA 应用指标分析

3.1 带宽计算

一个用于光电流检测的常规的跨阻型运放的工作电路一般简化如下:

Figure2 TIA 光电检测电路

Figure2 TIA 光电检测电路

或是用于作DAC 的电流转电压的应用场合:

Figure3 TIA 用于DAC 输出电流检测电路

Figure3 TIA 用于DAC 输出电流检测电路

对一定的运放, 其GBP 是固定的, Cdiff(芯片输入的寄生差分容值), Ccm(芯片输入的寄生共模容值)也是固定的, 选定前面的光检测管APD 或PIN 后,其寄生容值CD 也就是固定了, 当放大倍数RF 固定的时候, 其能达到的-3dB 闭环带宽大约为:

公式1

但是由于前端的寄生电容Cs 和Rf 会在噪声增益曲线上形成一个零点,导致运放的开环增益曲线和噪声增益曲线相交处的逼近速度为-40dB/dec, 这样就会造成运放的不稳定,也就是会引起自激. 其波特图如下:

Figure4 未补偿时的波特图

Figure4 未补偿时的波特图

所以要达到这样一个稳定工作有一个前提, 需要采用CF 来作补偿, 在该曲线中引入一个极点. 补偿后的曲线如下:

Figure5 补偿后的波特图

Figure5 补偿后的波特图

所以需要让运放稳定工作, 且达到最宽的2 阶butterworth 频响, 其CF 的取值如下:

公式2

对于decompensated 的运放, 由于其最小增益的要求, 还引来另外一个要求, 就是其增益要大于其最小稳定增益, 由于在高频下, 其增益表达式如下:

所以对特定的decompensated 的运放, 这个值要大于其最小增益要求.

公式3

在一个假定前端的寄生容性为10pF 的场合, 以下是几个运放能达到的带宽和增益的对应关系:

Figure6 常用TIA 增益与带宽关系

Figure6 常用TIA 增益与带宽关系

3.2 噪声计算

在由以上公式算出的带宽后, 运放本身带来的噪声贡献可以由如下公式算出:

公式4

其中:

IEQ = 等效的输入噪声电流, 这个值在带宽 F 1/(2πRFCF)内有效.

IN = 运放本身输入的电流噪声,算inverting的输入.

EN = 运放输入的电压噪声.

CD = 前面的光电二极管的寄生电容.

F = 带宽,单位为Hz.

4kT = 1.6E – 21J at T = 290°K

根据这个公式计算出等效的输入噪声电流后, 就可以算出在TIA 输出后SNR 了.

4 实际应用中的常见问题

这里整理几个TIA 运放在实际使用中经常遇到的问题:

4.1 振荡

这个问题在高增益,又有宽带要求的情况下比较常见.


上一页 1 2 下一页

评论


技术专区

关闭