新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于D类音频放大器的程控交流电源的设计

基于D类音频放大器的程控交流电源的设计

作者:时间:2010-08-02来源:网络收藏

系统结构与控制原理
升压+全桥逆变器和输出LC滤波器是大功率极为常用的拓扑之一。如图1所示,这是一种两级非隔离拓扑,其第一级是升压级,用于把模块整流电压升压到实际峰值直流电压(>325V);第二级是逆变级,用于把峰值直流电压转变为电压,再经LC滤波器得到50Hz的输出电压。全桥逆变器一般采用单极性控制方式,其特点是高频臂的两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压波形;另两只功率管以较低的输出电压基波频率工作,从而很大程度上减小了开关损耗。该全桥逆变器并不是一个桥臂始终为低频(输出基频),另一个桥臂始终为高频(载波频率),而是以半个输出电压周期切换工作,即同一个桥臂前半个周期工作在低频,后半周则工作在高频,这样就保证两个桥臂功率管工作在均衡状态,提高了系统的可靠性。虽然该电路效率较高,但需要解决输入/输出之间的隔离问题。由于电缆测试仪的交流功率较小,若采用上述方案,则体积较大,且控制复杂。

本文引用地址:http://www.eepw.com.cn/article/180640.htm

图1 升压+全桥逆变器


若采用诸如LM1875单片集成功率件,用±30V供电时,最大输出功率可达30W。其接法同TDA2030相似,有单双接法和BTL接法。BTL接法采用两片LM1875,连接成桥式电路,两边的电路结构和参数完全相同,右边的集成电路由左边的集成电路通过一负反馈电阻控制,反之亦然。它可获得更高的输出功率。如图2所示,二极管1N4007用于防止输出感性负载产生过电压而损坏器件。电路的放大倍数可由输出端至反相输入端的反馈电阻来决定。A类、B类、AB类等功放均是线性功放,信号总是停留在放大区,输出晶体管担当线性调整器来调整输出电压,其结果是降低了效率,限制了输出功率。

图2 LM1875的BTL接法


采用D类构成交流电源,只需对的输入幅度控制就可以得到高纯度正弦交流电压。图3给出了所研制的程控交流电源系统结构框图,并且给出了每级的波形。其主电路由D类+半桥和LC滤波器组成。

图3 D类音频基本构成图


值得注意的是,半桥D类音频放大器因为能量可以双向流动而导致“母线电压提升”,这样会造成母线电容被充电。在半桥拓扑中,电源面临从功放返回来的能量而导致严重的母线电压波动或损坏,尤其是当功放输出低频信号到负载时。D类放大器区别于同步降压转换器的是,其参考信号是一个不断变化的音频信号,占空比围绕50%不断变化,电感电流双向,两个MOSFET作用相同。

主回路
采用国际整流器公司(IR) D类音频放大器的IRS2092,将误差放大器、PWM比较器、栅极驱动级电路和过载保护功能结合到一起,与IRS20955相比较具有很大的灵活性。用±100V供电时,最大输出功率可达500W,工作频率高达800kHz。如图4所示,它包括一个脉宽调制器、两个输出MOSFET和一个用于恢复被放大的音频信号的低通滤波器。由于输出500V正弦波有效值,输出端有一个低频升压变压器。音频输入信号与内部振荡器产生的三角波进行比较后,得到PWM信号,方波的占空比与输入信号电平成正比。没有输入信号时,输出波形的占空比为50%。图5显示了不同输入信号电平下所产生的PWM输出波形。

图4 程控交流电源主电路


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭