新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于开关平均化模型的PFC电路仿真

基于开关平均化模型的PFC电路仿真

作者:时间:2011-02-13来源:网络收藏

摘要:采用器件的,根据实际工作原理,建立适用于PSPICE软件的

本文引用地址:http://www.eepw.com.cn/article/179852.htm

。采用此进行、具有速度快、实现简单且与实际结合密切的特点。

模型的准确性由所建模型与实际模型结果的比较得到证实。

关键词:仿真

1引言

  在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性,而得到大量应用。近二十年来,仿真已逐渐成为电力电子CAD的有力工具。当前,电路是电力电子研究领域的一个热点,对于PFC电路本身来说,具有非线性和时变的特性。电路的仿真研究,对于电路分析和参数优化选择具有重要意义,极大地方便了电路设计。但由于PFC电路工作频率较高,若采用PSPICE软件进行瞬态仿真,电路周期限制了仿真步长的取值。同时,由于PFC电路控制采用双环结构,电路结构复杂。这样,就占用了大量的机时。使仿真的高效性大打折扣。鉴于此,文献[1]提出了系统建模法的PFC电路模型仿真。该模型用受控源实现了电路的数学模型描述式,模型与实际电路无密切联系。且模型假设电路功率因数为1,从而使电流控制环特性无法在模型中得到反映。本文利用模型代替开关模型,并利用PSPICE软件丰富的受控源器件建立了PFC电路的双闭环仿真模型。该模型与实际电路结构密切结合,且大幅度减少了仿真占用机时,提高了仿真效率。在本文中,将采用开关器件物理模型的PFC电路仿真模型简称为开关模型,将采用开关器件平均化模型的PFC电路仿真模型简称为平均化模型。

2开关的平均化模型

  利用PSPICE软件对电路开关模型进行瞬态分析时,在每一个开关时刻都要进行一次电路状态方程的求解。由于PFC电路工作频率较高,所以,电路的仿真要占用大量机时。而通过建立开关平均化模型,在电路开关周期小于电路时间常数的条件下,利用低频,平均化等效电路(如受控源)代替变换器中的开关器件,使仿真过程避免了在每一个开关时刻求解电路状态方程,从而提高了仿真速度。

Sjf1.gif (4618 字节)

(a)开关物理模型(b)开关平均化模型

图1电路仿真模型

  对于图1(a)所示的电路结构,当电感电流连续时(CICM),在一个开关周期内,设开关的占空比为D,开关S两端电压平均值为:

UAB=(1-D)Uo(1)

流过二极管的电流平均值为:

ID=(1-D)IL(2)

式(1)(2),我们可分别用受控电压源代替主开关,用受控电流源代替续流二极管,得到原电路在一个开关周期内的平均化模型。与原电路相比,输入电感两端平均电压与经续流二极管流入电路末端的平均电流保持不变。

 

3PFC电路仿真模型的建立

3.1主电路模型

  我们采用开关平均化模型代替PFC电路主开关和续流二极管,其余电路元器件仍采用实际电路模型。这样的好处在于使仿真电路最大限度地与实际电路保持一致。

3.2控制电路模型

  对于采用平均电流控制的PFC电路来说,其控制器为双环结构。其中由电压外环决定电流内环参考信号,使电路输入输出功率保持平衡。通过电流内环控制开关通断,使输入电感电流实现对电流参考信号的精确跟踪。在实际电路中,电流内环参考信号是由电流与电压同步的信号KUIN、电压外环调节器输出AV.out、和输入电压有效值URMS三路信号按式(3)综合后得到的[2]:

IREF=KUINAVOUT/U2RMS(3)

在电路模型中,我们利用乘法器实现了上式。对于1/U2RMS项,电路须做一次平方和一次除法运算,这将使仿真模型的复杂性和仿真占用时间增加。为此,在建模中采用离线计算,然后将其作为式(3)的相乘因子。对于电流调节器,模型与实际电路一致。在实际电路工作时,由电流调节器的输出与稳定的锯齿波进行比较来控制开关通断。在受控源模型中,由于电流调节器输出不含开关频率脉动,假设稳定的锯齿波幅值为5V,代替主开关和续流二极管的两个受控源控制式中均含有的因子(1-D)可表示为,

  (1-D)=1-Ai.out/5(4)

在PSPICE元件库中,表格式电压受控源可以按照数学表达式对控制信号进行运算。在此,我们用一个表格式电压源实现式(4)。最后,加上电压调节器就完成了整个系统模型的建立。完整的模型如图2所示:乘法器电压源E1代替了主开关,乘法器电流源G1代替了续流二级管。式(3)由乘法器电压源E2和乘法器电流源G2实现,式(4)由表格式电压源E14实现。在模型中用到了电流控制电压源H1,主要是用来把电流信号转换为适合受控源输入信号要求的电压信号。

Sjf2.gif (10812 字节)

图2PFC电路平均化仿真模型

DIY机械键盘相关社区:机械键盘DIY



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭