新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 反激电源以及变压器设计解析

反激电源以及变压器设计解析

作者:时间:2012-07-02来源:网络收藏

对于探讨反激这个话题,我犹豫了很久。因为关于反激的话题大家讨论了很多很多,这个话题已经被讨论的非常透彻了。关于反激的参数也有多篇文章总结。还有热心的网友,根据计算过程,自己编写了软件或电子表格把计算做的傻瓜化。但我也注意到,几乎每天都会出现关于反激过程出现问题而求助的帖子,所以,思量再三,我决定还是再一次提出这个话题!我不知道我是否能写出一些有新意的东西,但我会尽力去写好。不期望能入高手的法眼,但愿能给入门者一些帮助。

本文引用地址:http://www.eepw.com.cn/article/176777.htm

  纵观市场,没有哪一个拓扑能像反激电路那么普及,可见反激电源在电源中具有不可替代的地位。说句不算夸张的话,把反激电源设计彻底搞透了,哪怕其他的拓扑一点不懂,在职场上找个月薪10K的工作也不是什么难事。

  提纲

  1、反激电路是由buck-boost拓扑演变而来,先分析一下buck-boost电路的工作过程。

  


  

  工作时序说明:

  t0时刻,Q1开通,那么D1承受反向电压截止,电感电流在输入电压作用下线性上升。

  t1时刻,Q1关断,由于电感电流不能突变,所以,电感电流通过D1,向C1充电。并在C1两端电压作用下,电流下降。

  t2时刻,Q1开通,开始一个新的周期。

  从上面的波形图中,我们可以看到,在整个工作周期中,电感L1的电流都没有到零。所以,这个工作模式是电流连续的CCM模式,又叫做能量不完全转移模式。因为电感中的储能没有完全释放。

  从工作过程我们也可以知道,这个拓扑能量传递的方式是,在MOS管开通时,向电感中储存能量,MOS管关断时,电感向输出电容释放能量。MOS管不直接向负载传递能量。整个能量传递过程是先储存再释放的过程。整个电路的输出能力,取决于电感的储存能力。我们还要注意到,根据电流流动的方向,可以判断出,在输入输出共地的情况下,输出的电压是负电压。

  MOS管开通时,电感L1承受的是输入电压,MOS关断时,电感L1承受的是输出电压。那么,在稳态时,电路要保证电感不进入饱和,必定要保证电感承受的正向和反向的伏秒积的平衡。那么:

  Vin×(t1-t0)=Vout×(t2-t1),假如整个工作周期为T,占空比为D,那么就是:Vin×D=Vout×(1-D)

  那么输出电压和占空比的关系就是:Vout=Vin×D/(1-D)

  同时,我们注意看MOS管和二极管D1的电压应力,都是Vin+Vout

  另外,因为是CCM模式,所以从电流波形上可以看出来,二极管存在反向恢复问题。MOS开通时有电流尖峰。

  上面的工作模式是电流连续的CCM模式。在原图的基础上,把电感量降低为80uH,其他参数不变,仿真看稳态的波形如下:

  


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭