新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于ATmega16L的温度控制系统设计

基于ATmega16L的温度控制系统设计

作者:时间:2011-12-24来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/172286.htm

  随着科学技术的进步,检测行业发展快速,除了检测项目和内容不断扩大,更重要的是检测愈来愈科学化、职能化,主要表现在检测过程及检测结果由计算机监控和显示。多点的采集控制近年来在检测行业应用较为广泛,其中以微机为核心的监控技术价格低廉,使用方便,应用也最普遍。

  本文主要介绍单片机的,具体包括炉温的采集和控制、LCD显示以及PC机绘制变化的曲线图等。硬件和软件采用模块化的思想,系统集成度较高。

  2 系统的硬件

  图1为系统硬件的总体结构图。系统由主控制器、温度传感器、运算放大电路、液晶显示电路、键盘电路、串口通信电路等构成。由结构图1可看出,系统模块较多,所以应合理分配I/O 口资源,各模块以单片机为核心相连接。


  2.1 主控制器

  系统主控制器采用,该单片机是一款高性能、低功耗的8位AVR微处理器,具有先进的RISC结构,内部有大容量的ROM、RAM、FLASH和EEPROM,集成4通道PWM,SPI串行外设接口,同时具有8路10位A/D转换器,对于数据采集系统而言,外部无需单独的A/D转换器,从而可节省成本。另外,该单片机提供JTAG调试接口,可采用自制的简易JTAG仿真器进行程序调试。

  2.2 温度采集电路

  图2为温度采集电路。该电路主要由温度传感器AD590和差分运算放大器AD524组成,其中温度传感器AD590是一种新型的两端式恒流器件。激励电压范围是4~30 V,测温范围为-55~+150℃。当AD590的电流流过一个5 kΩ的电阻时,温度升高1 K,该电阻上的电压增加5 mV,即转换成5 mV/K。因此,温度在0~100℃间变化时,电阻电压在1.365~1.865 V间变化。运算放大器AD524用于把绝对温度转换成摄氏温度。


  2.3 温度控制电路

  该电路主要由光电耦合器和可控硅组成,如图3所示。单片机发出的控制信号(PWM)经驱动器后控制光电耦合器的工作状态。当光电耦合器工作后,使双向可控硅的触发极处于高电平,可控硅处于导通状态,进而控制加热棒的工作。

  2.4 其他电路

  (1)显示电路系统的模块较多,I/0接口紧张,显示器选用液晶显示器TCl602A,接口采用高4位数据传输方式。

  (2)键盘电路系统采用非矩阵式键盘,该键盘结构简单,使用方便,不会占用较多I/O,适用于按键个数较少的场合。

  (3)串口电平转换 电路电平转换由MAX488器件完成,MAX488为RS-488收发器,速度高于MAX232,简单易用,单+5 V供电,外接少量器件即可完成从TTL电平到RS-488电平的转换。

  3 系统软件设计

  系统采用分层控制方式保证温度稳定。下位机采用ATmega16L单片机作为硬件开发核心,采用C语言编程。上位机采用工控机作为监控系统,采用Visual Basic6.0编程,两层之间采用RS-488通讯实现数据交换。在单片机部分,软件设计采用模块化设计方法,整个软件可分为主程序、按键处理程序、A/D转换程序、增量式PID处理程序、串行通信程序和显示处理程序、数据保存处理程序、看门狗处理程序。

  (1)主程序 系统主程序主要完成系统各部件初始化操作,此外,在系统开始运行后等待按键处理。图4为其流程。


  (2)按键处理程序 键盘处理程序通常采用查询方法实现按键的识别,CPU只要一有空闲就调用键盘扫描程序,查询键盘,识别键值,并予以处理。

  (3)A/D转换程序 ATmega16有一个10位包括采样保持电路的逐次逼近型A/D转换器,该转换器与一个8通道模拟多路复用器连接,能对来自端口A的8路单端输入电压进行采样。通过设置ADCSRA寄存器的ADEN即可启动A/D转换器,只有当ADEN置位时,参考电压及输入通道选择才生效。向A/D转换器启动转换位ADSC位写“1”可启动单次转换。在转换过程中此位保持为高电平,直到转换结束触发中断。然后被硬件清零。

pid控制器相关文章:pid控制器原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭