新闻中心

EEPW首页 > 消费电子 > 设计应用 > 一种基于FDTD分析的多频带单极天线

一种基于FDTD分析的多频带单极天线

作者:时间:2010-04-28来源:网络收藏
0 引言
随着无线通信中语音业务、窄带和宽带数据业务的发展,具有3G功能的手机将逐步成为市场的主流。同时,手机的设计也日新月异,对的宽特性、多频工作及小型化要求更为苛刻。目前,多模手机一般只采用一个能支持多种无线制式的多。多手机主要采用PIFA天线和天线,相比其他形式的天线,这两类天线都具有剖面低、体积小、设计方便等特点,因此广泛用于手机等移动通信终端上。基本的PIFA天线是将倒F天线的水平振子改变成平面形式,从而引出了平面倒F天线。随着对PIFA天线的深入研究,又出现了很多性能良好的新型PIFA天线。面对多模手机对多频带天线的要求,天线大带宽和高增益更适合多模手机几百兆带宽的需求,而且内置平面天线的结构灵活,易于与当今多变的手机结构相配合,目前市场流行的超薄超小手机普遍采用这类天线。
多频带单极天线设计常用的多带技术主要有多辐射分枝结构、优化馈电线结构或增加输入匹配集总元件,优化辐射片与地的容性负载,辐射贴片开槽,调整辐射片形状,增加电流密度获得的高阶模式。文献采用多个辐射分枝的结构,提出了两典型的多分枝单极天线,文献在矩形平面单极天线的内部,嵌入一个弯曲的切槽,实现GSM/DCS/PCS三频带天线。
本文提出的多频带单极天线,通过在平面矩形天线上开槽,实现GSM/DCS/PCS频段,同时通过一接地耦合辐射片,有效拓展了天线的工作频段,能同时满足TD-SCDMA制式。由于设计的天线可以与手机的其他电路制作在同一印制板上,因此天线的制作价格很低,天线高度非常适合超薄手机。

1 天线的设计和仿真
传统的单极天线,辐射分枝的长度约为1/4波长。单极天线的辐射电阻和辐射场,可以利用镜像原理来计算。简单单极天线有较低的辐射电阻,电抗为大的容性。对于无穷大地其辐射图等同于偶极子,如果将地逐步缩小,将无法形成理想镜像,地面的电流分布将发生变化。在现代天线设计中,利用电磁场仿真软件对天线进行仿真成为天线设计的主要方式。本文使用的电磁场仿真软件采用时域有限差分法,在时域进行计算。由于激励信号可以是具有很宽频谱分量的窄脉冲,与傅里叶变换相结合,可以通过一次计算得到计算对象所需频带宽度内的特性,因此特别适合宽带问题的研究。
利用时域有限差分法电磁场时,首先将计算空间划分成有限网格,每一电场分量由四个磁场分量环绕,每一磁场分量亦由四个电场分量环绕,这种划分方法满足麦克斯韦旋度方程的结构形式,适合旋度方程在空间进行差分运算,而且可以恰当地描述电磁波在空间的传播过程。将麦克斯韦旋度方程在上述空间网格和时间上进行离散,用下面的符号来表示任意场分量F在点(x,y,z,t)的值:
F(x,y,z,t)→F(i△x,j△y,k△z,n△t)→Fn(i,j,k)
式中:△x,△y,△z分别是x,y,z方向上的空间网格步长;△t是时间步长;i,j,k为整数,因此可用具有二阶精度的差分运算来替代微分运算。
为了便于计算编程,空间和时间的编号为整数值,可得到无源区麦克斯韦旋度方程式(1)和式(2)的各分量的迭代公式见式(3)~式(8):

式中:为介质中的波阻抗;△τ=v△t为一个时间步长波在空间走过的距离;为介质中波的相速,其中ε为媒质的介电常数,μ为媒质的磁导率。
采用数值计算空间总是有限的。为了在有限空间中计算电磁场量,需要对有限空间的周围边界做特殊处理。在中使用PML(Perfect Match Layer)技术,可以将计算区域设置为真空,在计算区域内存在散射体和外向波,计算区域由PML吸收媒质包围,PML媒质之外是理想导体。
基本多频带单极天线结构如图1所示,PCB主板采用通用FR4材料,板厚1 mm,尺寸为40 mm×105 mm。天线的主辐射单元通过开槽形成两个辐射分枝,这两个辐射分枝长度不同,通过调整辐射分枝的长度,可得天线获得两个谐振频率,分别对应900 MHz和1800 MHz。靠近馈线的接地辐射片用于调节高端的谐振频率,使得高频带的工作范围能满足TD-SCDMA要求,天线辐射单元的最终尺寸通过仿真软件的优化而确定。

本文引用地址:http://www.eepw.com.cn/article/166720.htm


图2显示了接地寄生辐射分枝对天线工作频带的影响。从图2(a)可以看出,没有接地辐射分枝的情况下,天线仅能覆盖GSM900和DCSl800,通过添加接地辐射分枝,有效地扩展了天线的工作频带。图2(b)显示了接地辐射分枝的长度L3对天线高频带的影响。通过调整其长度,使得与主辐射片的短辐射分枝的谐振频率部分交叠,可以获得最大的工作频带。



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭