新闻中心

EEPW首页 > 消费电子 > 设计应用 > 便携式设计的高速视频总线设计挑战

便携式设计的高速视频总线设计挑战

作者:时间:2010-08-02来源:网络收藏

犹记在1980年的时候,一位朋友在Commodore 64屏幕上绘制出第一幅万宝路烟盒的计算机图像。他利用DOS操作系统编写出一套软件程序,将各个像素和像素域的色彩值及地址输出到 CRT 屏幕上,花费几小时的时间完成红、黑和白三色影像。如今,技术的发展完全不可同日而语!不论是专业的美工人员,还是对于如何正确调整像素位置一窍不通的门外汉,都能出影像。显示设备不只配备高级的电子组件,更有引人注目的美学和可移植性。数字显示技术使得彩色影像无处不在,客厅里管线所能达到的传输速率如今已接近令人难以置信的330×1010b/s。那段烟味弥漫和充斥DOS影像的日子已经一去不复返,相当令人庆幸!

本文引用地址:http://www.eepw.com.cn/article/166659.htm

行动产品发展历程回顾
由于数字处理技术不断演进,崭新的个人计算世界才得以实现,进而引起大流量数据传输管线的需求。在投影技术主要采用CRT屏幕的年代,数据大多被编码为模拟信号,并且在阻抗受到控制的环境中可达到绝佳的传输效果。但模拟显示器并不适用于电子产品。直到液晶显示器的问世,便携设备才真正能显示视频,视频接口从此便完全数字化。对屏幕分辨率要求较低的小屏幕而言,CPU接口是最常见的解决方案。这只是一种从视频来源到显示器的平行数据,驱动的方式与内存相同。显示器内部的区域单元格缓冲器(local frame buffer)可支持速度相当慢的微处理器。


第二代显示技术造就出彩色显示器,由于需要速度更快的数据管线,再加上体积外型日益缩小的手机,使得显示器成为适应性强和具吸引力的设计组件。再者,连接处理器与可旋转显示器的线路必须更少、更快速。当时,有些公司运用数据串行化的概念来克服这一瓶颈,像是National Semiconductor的MPL技术,以及Fairchild的μSerdes技术。它们的基本原理都是在图形来源附近安装离散发送器(序列器),并且在显示器面板附近安装离散接收器(解序列器)。后者通常直接安装在软性印刷电路板(FPC)缆在线,而FPC将主运算处理板与显示器面板相互连接。这一系统的目标分辨率可达到QVGA等级,但色彩分辨率不超过16位/像素。


有了先进的显示技术,便能够呈现更高的分辨率和更鲜明的色彩。其中的显示分辨率是QVGA的2~6倍,并高达24位/像素色彩分辨率,因此需要再次增加数据处理量。此时,区域单元格缓冲器变得体积庞大且成本高昂,使用于笔记本电脑中的RGB视频接口便取代了原先的CPU接口。然而,与笔记本电脑相比,手机需要更长的待机和运作时间,也就需要比笔记本电脑技术更低功耗的解决方案。为了克服这个瓶颈,德州仪器将FlatLink3G技术导入该公司的OMAP应用处理器平台中,同时推出独立式发送器和接收器IC。此项技术的开发得到多家显示驱动器和面板设计厂商的支持,其他一些公司也采取类似的方法解决这个问题,例如,Qualcomm运用行动显示数字接口(MDDI)技术,视频电子标准协会(VESA)接着也采用MDDI。而Maxim决定使用独立式桥接解决方案,将缆线的数目减少为一条,只将频率嵌入于资料中。现有的 CPU 接口序列器解决方案也开始提供RGB视频接口。最终,行动设备设计人员希望能找到一种方法,将发送器整合于绘图引擎,并且将接收器整合于显示器。

图1 智能型手机使用离散序列器(发送)和解序列器 (接收)的实例


只有少数解决方案(例如,MDDI和FlatLink3G)能真正达到这样的整合,几种同类型概念的产品都使用复杂的模拟设计技术(如MPL),虽然能够降低功耗,但是要使之整合于标准CMOS发送器技术或高压显示驱动器技术则相当困难。


有了上述全部技术后,却出现一个新的问题:系统设计人员如何在不同的厂商之间选择正确的组件,并将这些组件互相连接?这需要将所有技术相互整合的解决方案。为了解决这个问题,囊括移动产业中大多数领导厂商的移动产业处理器接口(MIPI)联盟开发出显示串行接口(DSI)技术。这项技术将移动产品内的绘图引擎与显示器相互连接,同时结合CPU和RGB视频接口的优点。透过数据的封包化,DSI的功效变得相当强大,不但能协助发送器整合于应用处理器,且能将DSI接收器整合于显示驱动器。然而,DSI的离散桥接解决方案仍不甚理想,因为封包引擎相当昂贵,而且会增加更多功耗。FlatLink3G之类的专属替代方法就显得极具竞争优势,而且不需使用任何软件。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭