关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于LPC938的高精度数控直流电流源的设计

基于LPC938的高精度数控直流电流源的设计

作者:时间:2011-04-27来源:网络收藏

总体方案选择与
1方案论证与比较
① 主电路及调整方式的选择

本文引用地址:http://www.eepw.com.cn/article/162136.htm


方案一 开关稳压调整
开关稳压调整方式效率高,普遍应用于计算机等现代数字仪器中,但一般纹波较大,难以控制,很有可能造成的失败和技术参数的超标。


方案二 串联反馈调整
该方案采用负反馈网络,从输出电压取样与基准电压比较,并将误差经放大器放大后反馈至调整管,使输出电压在电网电压变动的情况下仍能保持稳定。该电路输出电压稳定性好,负载调整率高,引入的负反馈使纹波电压大大减小,且电路简单、容易调试。但其属于线性稳压源,即调整管工作在放大区,因而功耗比较大。


方案三 综合以上两种方案
结合开关稳压调整与串联反馈调整的优点,在串联反馈调整的基础上增加一级预稳压,构成智能恒压差系统,在保证调节范围的基础上减少功耗。


② 控制方案的论证比较
方案一 计数式数字电路控制
此方案使用计数器来来控制输出的步进,是一种采用小规模数字电路的控制方法。其优点是不需要软件支持,但元件多、硬件电路复杂、控制呆板、步进难以改变,且精度不高,难以达到要求。


方案二 CPLD控制
采用大规模数字逻辑电路CPLD,能够实现控制,功耗也不大,但其成本高、设计复杂。


方案三 单片机控制
单片机控制系统具有成本低、控制灵活的特点,通过软件的编制能够实现多种控制算法,且控制精度高、功耗低;特别是现代的增强型单片机,具有D/A、A/D、PWM、ICP等多种功能,能够单片完成较复杂的控制要求,所以选择单片机控制方式。


2 总体方案设计
综上所述,我们设计了响应速度快的模拟内环和调节精度高的数字外环双闭环调节系统。此系统通过面板按键对值进行预置,单片机输出相应的数字信号,经过PWM控制、信号放大、电平转换,通过串联式稳压调整管输出信号。实际输出的电流再利用精密电阻采样变成电压信号,经过高输入阻抗、放大器、A/D转换器,将信号反馈到单片机中。单片机将输出反馈信号再与预置值比较,送出调整信号,再输出新的电流。这样就形成了模拟内环和数字外环的双闭环调节,提高了输出电流的范围、精度、电压调整率和负载调整率,降低了功耗和纹波,并且电路简单、步进可调、可扩展能力强(见图1)。

图1 总体设计方案

理论分析、电路设计与参数计算
电流源的硬件部分主要由单片机系统及A/D接口电路、PWM智能控制恒压差及串联调整模块、键盘与显示电路、控制电源模块等组成。下面将分别对各部分进行分析并给出实现方案。


1 单片机系统及A/D接口模块
单片机选P89,它是80C51内核的高速、低功耗的带片内8Kb F1ash的8位单片机,其指令执行时间只需2~4个时钟周期,6倍于标准80C51器件。P89内部主要集成了字节方式的I2C总线、SPI接口、UART通信接口、实时时钟、EEPROM、PWM、ICP、A/D转换等一系列有特色的功能部件。


本设计需要三路A/D采样,其中对电流的采样要有很高的精度,考虑到控制精度要求,我们用16位的ADS1100芯片(含PGA放大器)对输出电流进行采样,用938单片机的10位A/D转换器对另外两路信号进行采样(P0.1,P0.2)。


由于P89和ADS1110内部均带有I2C总线,所以它们的连接很简单。P89LPC938的P2.2,P2.3,P2.4,P2.5脚用于键盘显示功能,P2.6,P1.6用于PWM的输出。


2 PWM智能控制恒压差及串联调整模块
此部分是整个硬件设计的核心,它直接关系到输出电流的范围、精度、纹波与电路的功耗。经过反复调试,我们设计的系统结构如下(见图2)。

图2 系统总体框图

基尔霍夫电流相关文章:基尔霍夫电流定律



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭