产品说明书的用途通常就是说明器件与理想模型的差异。例如,如果半导体供应商能够设计并制造出完美的、理想运算放大器,我们就不需要运算放大器产品说明书了,因为每个人都知道它们的特定属性(无限开环增益、无限输入阻抗等)。问题是没有这么简单。
首先简单介绍一下理想数模转换器 (DAC) 的属性,然后再深入讨论更为复杂的规范。下图是理想 DAC 的传递函数,重点列出了我们将要讨论的参数。
无论是 DAC 还是模数转换器 (ADC),任何数据转换器的最基本属性都是其分辨率。对
关键字:
DAC 运算放大器
本实验中,我们使用FPGA来驱动了一片DAC芯片TLC5620,该芯片的特性如下所示:
TLC5620特性:
4路8位电压输出;
单电源5V供电;
串行接口;
参考电压输入高阻;
可编程的1次或2次输出范围;
同时更新的能力;
内部自带上电复位功能;
低功耗;
半缓冲输出。
小梅哥设计的该芯片的驱动模块的接口如下所示:
各个端口定义如下:
以下是代码片段:
input Clk;
inp
关键字:
FPGA DAC
在DAC基础知识:静态技术规格中,我们探讨了静态技术规格以及它们对DC的偏移、增益和线性等特性的影响。这些特性在平衡双电阻 (R-2R) 和电阻串数模转换器 (DAC) 的各种拓扑结构间是基本一致的。然而,R-2R和电阻串DAC的短时毛刺脉冲干扰方面的表现却有着显著的不同。
我们可以在DAC以工作采样率运行时观察到其动态不是线性。造成动态非线性的原因很多,但是影响最大的是短时毛刺脉冲干扰、转换率/稳定时间和采样抖动。
用户可以在DAC以稳定采样率在其输出范围内运行时观察短时毛刺脉冲干扰。图
关键字:
DAC DAC8881
所有DAC之间的共性就是技术规格的定义以及说明。这篇文章将会论述静态DAC技术规格。静态DAC技术规格包括对DAC在DC域中所具有的特性的描述。在DC域中时,DAC的数字与模拟定时现象不属于这一组技术规格。
图1
虽然这3个DAC拓扑互不相同,但它们的技术规格与电气描述非常类似。
一个主要的静态DAC技术规格就是理想转换函数(图2)。在对这个普通转换函数的图示中,可以轻松地体会和理解零代码、偏移、满量程以及增益的定义。一旦你理解了上述概念,差分非线性 (D
关键字:
DAC 静态技术
引言
在当今工业自动化应用中,复杂的控制系统代替人工来操作不同的机器和过程。术语“自动化”指其智能化足以制定正确的过程决策从而实现目标结果的系统。我们这里所说的“系统”是指闭环控制系统。这些系统依赖于输入至控制器的传感器数据,提供反馈,控制器据此采取措施。这些措施就是控制器输出的变化。通过确保高性能、高可靠性工业操作,闭环控制系统对于现代化工业4.0工厂的工业自动化和效率至关重要。
本文讨论闭环系统的关键要素,重点关注模/数转换器(ADC)和
关键字:
ADC DAC
在分布式系统中,模拟信号在传感器或负载间来回远程传输。 由于信号要传输很长的距离,因此,噪声抑制能力成为一个重要考虑因素: 噪声会耦合进信号中,结果使数据遭到破坏,由此产生不良影响。 为了有效保护此类系统,我们必须了解预期噪声的量级和性质。 这样有助于明确需要采取的保护措施,以便抵消或者至少减少环境干扰水平。
噪声源或干扰源一般有两种,取决于其耦合进主信号的方式: 共模噪声和差模噪声(图1)。
二者中危害较小的共模噪声会同时耦合到系统GND信号和激励信号中,这主要是由电缆与真实GND间
关键字:
GND 传感器 DAC 放大器 噪声
模拟可变频滤波器要求使用可变无源器件。滤波器斜率越大,所需的可变无源器件就越多。这些元件很多时候是电位器。例如具有18dB/8倍频斜率的低通巴特沃斯滤波器需要使用一个三组电位器。如果我们同时需要重新调谐低通和高通滤波器,那么必要的电位器电阻抽头数量将翻倍。
当我们需要同时重新调谐多个相同的滤波器时也是这样。这些多组电位器非常昂贵,而且很难找到。另外一个问题是它们的群误差,在实际使用中大约有3dB的误差。这些电位器的体积通常也很大。另外,电位器磨损会产生“杂音(zipper)&rdqu
关键字:
滤波器 电位器 DAC
Analog Devices, Inc. 全球领先的高性能信号处理解决方案供应商及数据转换器市场份额领先者,近日推出业内首款面向电信系统制造商的2.8 GSPS双通道16位转换器AD9136,可满足点对点无线回程设备的微波频率要求。 16位AD9136和11位AD9135这两款双通道DAC可实现比竞争器件高70%的信号带宽,同时还可帮助设计师支持日益兴起的E频段(71-76 GHz和81-86 GHz),无线运营商采用这些频段是为了满足不断增长的高速移动语音和数据传输需求。 新转换器最高采样速率为2.
关键字:
ADI DAC AD9136
在使用我们的最新模数转换器 (ADC) 和数模转换器 (DAC) 设计系统时,我已知道了很多有关 JESD204B 接口标准的信息,这些器件使用该协议与 FPGA 通信。此外,我还在 E2E 上的该栏目下阅读了各种技术文章及其它博客文章,明白了为什么 JESD204B 是 LVDS 和 CMOS 接口的后续产品。
有一个没有深入讨论的主题就是解决 ADC 至 FPGA 和 FPGA 至 DAC 链路问题的协议部分,这两种链路本来就是相同的 TX 至 RX 系统。作为一名应用工程师,我所需要的就是
关键字:
JESD204B FPGA DAC
图 1
图 1 是 3 线模拟输出模块图。该模块使用双通道 DAC8562 数模转换器 (DAC) 驱动支持高电压、36V OPA192 运算放大器的电压与电流输出级。
电流输出是一个双级、高侧、电压至电流转换器。由放大器 A2、MOSFET Q2 和检测电阻器 RB 组成的第二级电路可为负载提供输出电流。A2 可在反相输入节点上感测整个 RB 上的压降,从而可通过负反馈调节输出电流。这样可确保其等于应用在非反相输入端的电压。
如果单独使用该级,高侧电源上
关键字:
德州仪器 DAC 电流转换器
凌力尔特公司 (Linear Technology Corporation) 推出 16 位 2.5Gsps 数模转换器 (DAC) LTC2000,该器件具出色的频谱纯度,在 200MHz 输出时 SFDR 为 74dBc,输出频率从 DC 至 1GHz 时 SFDR 优于 68dBc,这比同类的 14 位 DAC改进了 12dB。LTC2000 具低相位噪声和很宽的 2.1GHz -3dB 输出带宽,在高端仪表、宽带通信、测试设备、有线电视 DOCSIS CMTS 以及雷达应用中,能够实现宽带或高
关键字:
凌力尔特 DAC LTC2000
摘要:本文在SIP立体封装技术的基础上,设计了基于DSP、FPGA的复合电子系统模块。重点介绍了模块的功能构成及模块接口应用,为基于SIP小型化封装的复合电子系统(功能可订制)提供应用基础。
引言
随着电子技术的发展对系统模块小型化高可靠性提出了更高的要求。复合电子系统模块是欧比特公司推出的一款SIP模块,其将特定(可定制)的电子系统功能模块采用立体封装技术制作而成。本文介绍了基于DSP、FPGA的复合电子系统模块OBT-MCES-01的功能构成以及应用方法。
1 SIP简介
关键字:
复合电子系统 DSP FPGA ADC DAC RS422 CAN 201409
许多数字处理系统都会使用FPGA,原因是FPGA有大量的专用DSP以及block RAM资源,可以用于实现并行和流水线算法。因此,通常情况下,FPGA都要和高性能的ADC和DAC进行接口,比如e2v EV10AQ190低功耗四通道10-bit 1.25 Gsps ADC和EV12DS130A内建4/2:1 MUX的低功耗12-bit 3 Gsps DAC。 通常情况下,这些转换器的采样率都达到了GHz的级别。对工程师团队来说,除了混合信号电路板布局之外,理解和使用这些高性能的设备也是一个挑战。
关键字:
ADC DAC FPGA
TI 最近推出了几款 JESD204B 数模转换器 (DAC) ,其中包含的求和模块是高速四通道 DAC 的最新功能。它位于内插滤波器及复合混频器后面的信号路径中,可帮助两个复合数字路径在进行模拟转换之前加在一起。
我能使用求和模块做什么?
如果您需要使用一个发送器同时发送两个不同的频带(例如采用一个宽带发送器发送两个不同的蜂窝频带),那这个功能就很适合您。求和模块可承担 FPGA 中的频率分离创建工作,将该工作交由 DAC 完成。
图 1 是 DAC38J84 中的四个数字路径,称
关键字:
数模转换器 DAC DAC38J84
Maxim Integrated Products, Inc. (NASDAQ: MXIM)推出采用PIXI™最新混合信号技术设计的MAX11300,使工程师能够随意配置20路ADC、20路DAC或20路高压数字I/O引脚。
厂商针对不同应用推出的器件往往灵活性差,且编程难度大。MAX11300 PIXI是业内首款可配置的20通道、-10V至+10V高压混合信号数据转换器,可理想用于基站、工业控制和自动化等需要多路混合信号的复杂应用。MAX11300 PIXI自带的图形用户界面软件允
关键字:
Maxim Integrated PIXI DAC ADC
dac介绍
电脑对声音这种信号不能直接处理,先把它转化成电脑能识别的数字信号,就要用到声卡中的DAC(数字/模拟转换),它把声音信号转换成数字信号,要分两步进行,采样和转换。
即数/模转装换器,一种将数字信号转换成模拟信号的装置。 DAC的位数越高,信号失真就越小。图像也更清晰稳定。
DAC格式是英文Digital Audio Compress的简称,是北京豪杰纵横网络技术有限公司(以超级解霸的成功开 [
查看详细 ]
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473