- 通过探索看似不相关的大语言模型(LLM)架构之间的潜在联系,我们可能为促进不同模型间的思想交流和提高整体效率开辟新的途径。尽管Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)近来备受关注,Transformer架构仍然是LLM的主要支柱。这种格局可能即将发生变化:像Jamba、Samba和Griffin这样的混合架构展现出了巨大的潜力。这些模型在时间和内存效率方面明显优于Transformer,同时在能力上与基于注意力的LLM相比并未显著下降。近期研究揭示了不同架构选择之间的深层联系,包括T
- 关键字:
Transformer RNN SSM 模型
ssm介绍
您好,目前还没有人创建词条ssm!
欢迎您创建该词条,阐述对ssm的理解,并与今后在此搜索ssm的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473