测量瞬态电场的三维宽带天线设计
表3第二组模型感应电压Uz的波形参数
模型号 | 距离长度(cm) | 峰值(V) | 上升时间(nS) | 脉宽(nS) |
1 | 1 | 783 | 2.4 | 24 |
2 | 0.5 | 399 | 2.4 | 24 |
3 | 1.5 | 1145 | 2.4 | 24 |
(3)为了研究改变导电立方体尺寸对三维测量带宽的影响,也设计一组计算模型,模型的结构参数及数值模拟的统计结果见表4。可以看出,接地极的边长的改变对天线的频率响应影响很大。
表4 仅改变接地体尺寸时的计算模型参数及天线频率响应数值仿真结果
序 号 | 计算模型参数 | 频率响应 | ||
接地极的边长(cm) | 天线极板至接地极的距离(cm) | 极板边长(cm) | 感应电压的3dB带宽(MHz) | |
1 | 9 | 1.5 | 4 | 816 |
2 | 7 | 1.5 | 4 | 1010 |
3 | 6 | 1.5 | 4 | 1153 |
4 | 5 | 1.5 | 4 | 1376 |
5 | 4 | 1.5 | 4 | 1800 |
3. 结论
(1) 从数值模拟结果上来看,保持天线平板到内部立方体的距离不变,只改变正方形平板的尺寸大小,对感应电压影响不大;保持正方形平板的尺寸不变,改变平板到内部立方体的距离,对计算结果有很大影响,距离增加一倍,感应电压的峰值近似增加一倍。
(2)从感应电压的波形看,三维天线的高频响应很好,低频响应不足,需要在实际设计时对低频进行补偿。
(3)接地极的边长的改变对天线的频率响应影响很大,接地极的边长减小可以提高天线的带宽。
评论