逻辑代数的化简算法
逻辑代数的化简算法
观察函数
1.该函数有四个逻辑变量,可表示成
Y=f(A、B、C、D)
2.该函数有三个乘积项:第一项有四个因子——四个变量在乘积项中都出现了。第二项有三个因子——缺少变量B(或
)。第三项
缺少变量C、D(或
、
)。
3.第一个乘积项是A、B、C、D的一个最小项,其余二项均不是A、B、C、D的最小项。
最小项:n个逻辑变量A1、A2、…… An组成的逻辑系统中含n个因子的乘积项——每个变量(或
)在乘积项中只出现一次,称这样的乘积项为最小项。
两个逻辑变量A、B有22=4个最小项,分别是:、
、
、
。
三个逻辑变量A、B、C有23=8个最小项,分别是:、
、
、
、
、
、
、
。
四个逻辑变量A、B、C、D有24=16个最小项。
练习:写出A、B、C、D的十六个最小项。
最小项的性质:
(1)对变量的任意一组取值,只有一个最小项为1,其余最小项全为0。二变量A、B的最小项为:、
、
、
。对A、B的任意一组取值:
A=0 B=0 =1 其余三项全为0,即
=
=
=0
A=0 B=1 = 1 其余三项全为0
A=1 B=0 = 1 其余三项全为0
A=1 B=1 = 1 其余三项全为0
(2)全体最小项之和为1。(读者自己证明)
(3)任意两个最小项的乘积为0。
最小项的编号:
三变量A、B、C的八组取值000、001、……111能分别使八个最小项的值为1,又与十进制数0,1……7的二进制数表示相同。用0~7编号八个最小项,记为:m0、m1、m2、m3、m4、m5、m6、m7,则m7=m111=,……m4=m100=
,m0=m000=
。
练习:读者试写出四变量A、B、C、D的十六个最小项m0、m1……m15。
逻辑函数的最小项之和形式
任何逻辑函数都可化为最小项之和的标准形式
例:将下列函数化为最小项之和的形式
反函数的最小项之和表示
例:求二变量A,B的逻辑函数的反函数
。
解一:
解二:列真值表
由真值表写出的逻辑表达式
(全体最小项之和)
如三变量A,B,C的逻辑函数则必有
结论:在n个变量的逻辑系统中,如果Y为i个最小项之和,则必为余下的(n-i)个最小项之和。
异或运算与同或运算
定义: 称A与B异或,
为异或运算符
A与B同或,
为同或运算符
显然:
异或与同或互为反函数
由此推得:
即两者相等为0,不相等为1
同或运算则与之相反,且有
同学自己证明并牢记。
例1. 将下列函数化为最简与或式。
例2. A,B的波形如下图所示,试画出
的波形。
最小项的相邻性
任何两个最小项如果他们只有一个因子不同,其余因子都相同,则称这两个最小项为相邻最小项。
显然,m0与m1具有相邻性,而与
不相邻,因为他们有两个因子不相同。m3与m4也不相邻,而m3与m2相邻。
相邻的两个最小项之和可以合并成一项,并消去一个变量。如:
卡诺图
卡诺图是美国工程师卡诺(Karnaugh)发明的。用小方块(格)来表示最小项。三变量的卡诺图画八个小方块(格)来表示八个最小项,四变量的卡诺图画十六个小方块来表示十六个最小项。……

评论