IEEE 1451.4混合模式接口(MMI)智能变送器数字驱动电
图3增加了另一条线,构成4线电压供电传感器,共用返回线(通常为接地通路)或屏蔽线。传感器和TEDS存储器具有独立的电源,可同时工作。依然需要选择模拟和数字模式的开关,以便在使用传感器时禁用数字功能。这有助于降低共用回路压降引起的模拟信号和数字TEDS数据之间的相互干扰噪声。这种配置下并不需要二极管和Rt。电阻可以省略,二极管可用短路线代替。

图3. IEEE 1451.4 Class 1 MMI,共用返回线。
TEDS存储器
DS2430A 256位1-Wire EEPROM是典型的TEDS存储芯片。由于该芯片没有VCC引脚(即采用寄生供电),只需要两个引脚:IO和GND。IEEE标准第8.1.2章的方框图未提及这些引脚名称,而是用“+”表示IO,“-”表示GND。图4所示为IEEE 1451.4兼容传感器的数字部分,采用实际型号和引脚名称。标准(第8.5章,家族码)未对TEDS存储器规定专用的家族码。因此,允许使用DS2430A之外的2引脚1-Wire存储器芯片。通用二极管1N4148可用肖特基二极管代替,其正向偏压大约为0.3V。Rt电阻值不是特别关键,电路采用100kΩ测试。

图4. Class 1传感器,TEDS工作原理。
1-Wire器件工作信号电平在空闲状态为3V至5V (上拉电压),有效状态为0V。该电压是IO端(正端)与GND端(负端)之间的电压。Class 1 MMI将IO引脚连接至0V,并调制存储器芯片GND引脚的负压(图5)。与标称1-Wire信号电平相比,MMI信号反相,向负向平移5V。

图5. 标称1-Wire与Class 1 MMI信号电平
存储器芯片不能辨别、也不关心其端子电压如何产生。应答时,只是在其端口按规定的时间作用一个短路信号。“常规状况”下,这种短路信号在IO口观测到只是一个接近0V的电压。对于Class 1 MMI,短路造成数字通信线上的电压从-5V (空闲)升高至二极管压降-VF (-0.7V)。
MMI驱动器说明
图6所示为MMI驱动器电路。电路由正向通路(顶部,主控至传感器,写)和返回通路(底部,传感器至主控,读)组成。IEEE 1451.4兼容传感器通过模拟/数字开关连接至TP4。返回通路连接至驱动器的0V (GND)。TP2和TP6处的信号电平对应于标称1-Wire电平(空闲状态为5V,有效信号电平为0V)。V+对应于微控制器的工作电压,范围为3V至5V。TP2连接至微控制器的开漏输出(写),TP6连接至一个输入端口。

图6. 带有传感器的Class 1 MMI数字驱动器
连接双向1-Wire主控器件
连接双向主控器件需要图7所示附加电路。由于电平转换部分的上升和下降沿传输延时不同,当工作电压太高时,采用双向1-Wire主控器件的MMI驱动器可能不稳定。考虑到这一原因,正电源需要限制在大约3.3V。因此,双向主控器件必须为3V供电器件,例如DS2482。使用5V双向主控器件(例如DS2480B),会导致模拟开关的COM和NO电压超过V+电平,不符合所要求的工作条件。


评论