JGD24-5固体式限时保护继电器的设计方案

3.3 限时保护电路的设计
为了避免起动机单次过长时间起动, 起动机因过热损坏绝缘层而烧毁定转子, 进而损坏起动机,在限时保护继电器的输入端设计出限时保护电路(如图6 所示)。输入端加电, 由于电容器C1 两端的电压不能够突变, 因此, 反相器的“1” 引脚为高电平, 通过两级反向门, 反相器的“4” 脚为高电平, 三极管V7 接通, 限时保护继电器开始工作。此时, 通过C1、R5 回路给电容C1 充电, 当反相器“1” 脚电压低于3.8V 时(即电容C1 两端的电压为1.2V), 反相器的“4” 脚输出低电平信号, 此时三极管V7 关断, 限时保护器停止工作。
其中, 充电时间的计算公式如下:
3.4 隔离电路的设计
限时保护继电器的输入端控制电流很低, 而输出电流很大, 所以, 它们之间必须进行电隔离, 其隔离电路的原理图如图7 所示。本电路中采用振荡电路的变压器耦合隔离。变压器耦合隔离主要由高频振荡电路、变压器耦合电路和整流电路组成。高频振荡电路采用双端推挽自激振荡输出, 它比单端输出更能提高输入能量的转换效率。提高振荡频率, 使其达到50kHz ~200kHz, 实现快速响应。
隔离变压器磁芯是本电路的关键器件, 直接关系到电路的特性和转换效率。根据材料特性与本电路的特点, 并通过反复试验, 采用Mn-Zn 高磁导率铁氧体材料作为隔离变压器磁芯。在选择铁氧体材料时要考虑如下几个方面:
⑴ 磁导率和饱和磁通密度要高, 可减少线圈匝数, 减小内阻, 减小磁环体积;
⑵ 矫顽力要小, 减小磁滞损失;
⑶ 电阻率要高, 减小涡流损耗;
⑷ 合理选择居里温度, 提高磁环的综合性能。
隔离电路设计的另一个关键是振荡电路的设计, 在本电路中振荡电路如图6 所示。在隔离的输入与输出确定后, 通过下列方式对振荡电路进行优化设计。
⑴ 调整RC 值, 改变振荡频率, 测试输出参数, 并计算耦合效率η, 直至η最大;
⑵ 调整变压器线圈匝数, 测试输出参数, 并计算耦合效率直至最大。

继电器相关文章:继电器工作原理
时间继电器相关文章:时间继电器
评论