后锂电池时代:哪种电池技术会脱颖而出(四)
空气电池采用新的离子液体
比全固体电池的潜力还要高的是被称为“终极电池”的锂空气电池。锂空气电池的正极采用空气中的氧,因此可大幅提高能量密度。不过,有观点指出空气极的还元反应存在难题等。
在本届电池研讨会上,丰田宣布通过在锂空气电池的电解液溶剂中采用离子液体N,N─二乙基─N─甲基─N─甲氧基铵双三氟甲基磺酰胺(DEME-TFSA),可实现与有机溶剂相当的容量(图11)注6)。
图11:与有机溶剂差不多的离子液体
丰田通过在锂空气电池的电解液溶剂中采用乙醚类离子液体DEME-TFSA,实现了与有机溶剂相当的容量。
注6) 丰田与丰田中央研究所以“作为Li-O2电池用电解液的乙醚类离子液体”为题发表了演讲[演讲序号:2G04]。
锂空气电池用电解液溶剂的研发主流——有机溶剂虽然有望实现高容量化,但副反应较大而且有挥发性,因此缺乏稳定性。丰田之前采用N─甲基─N─丙基哌啶双三氟甲磺酰胺(PP13-TFSA)离子液体也确认可以像理论上一样发生充放电反应,但一直存在容量低的课题。此次的DEME-TFSA与PP13-TFSA相比有望实现约3倍的高容量化。
有机化合物备受期待
虽然着眼于2030年的新一代电池研究相关的话题比较多,但旨在提高目前的锂离子充电电池性能的研究开发势头也丝毫没有减退。
目前的锂离子充电电池正极材料采用钴酸锂(LiCoO2)、3元系(LiNiMnCoO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)等(图12)。不过,这些正极材料的理论容量都在200mAh/g以下。因此,探索容量在200mAh/g以上的新材料,以及为将最大性能提高到理论容量值而在正极材料中添加添加物的开发日益活跃。
图12:多样化的正极材料
在本届电池研讨会上,关于有机化合物和固溶体类材料等正极材料的发表有很多。
容量最大提高到1000mAh/g
在通过采用新材料实现200mAh/g以上锂离子充电电池的候补技术中,关注度最高的是有机充电电池。正极采用有机化合物的有机充电电池的理论容量最大可达到近1000mAh/g。而且不使用重金属。因此具备重量轻,资源限制少的优势。
不过,有机充电电池虽然单位重量的能量密度高,但单位体积的能量密度却比较低。而且,锂电位大多只有2~3.5V。因此,要想实现与目前的锂离子充电电池相同的能量密度,至少要找到具备400~600mAh/g容量的有机化合物。
村田制作所计划有机化合物“采用红氨酸,力争2020年前后实现业务化”(该公司)。红氨酸如果发生四电子反应,就能实现890mAh/g的理论容量。在本届电池研讨会上,作为本田技术研究所与日本Carlit的共同研究成果,
评论