新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于正交矢量放大的MRS信号采集模块设计---- 采集模块硬件设计(二)

基于正交矢量放大的MRS信号采集模块设计---- 采集模块硬件设计(二)

作者: 时间:2017-02-27 来源:网络 收藏


4.3.3 74HC4046电路实现

锁相环实际电路连接图如图4.14所示。CPLD分频产生1300Hz~3000Hz范围内同Lamor频率相等的信号,输入74HC4046的14脚输入端。4脚VCO输出频率经过CPLD中的256倍分频器,再输入4脚相位比较器输入端。相位比较器的输出2脚经过RC低通滤波器输入VCO输入端,组成锁相环路。



74HC4046的VCO频率范围由外接电阻、电容决定,公式如下:

根据74HC4046数据手册,确定外围电容、电阻参数为:C1 = 47pF,R1 = 200kΩ,R2 = 220kΩ。最终测得VCO输入电压为0和VDD时,VCO输出波形如图4.15和图4.16所示。


4.4低通滤波器电路

4.4.1 LPF电路设计

要求锁定放大器改善信噪比的作用主要由低通滤波器来实现。低通滤波器的通带宽度越窄,抑制噪声的能力越强。即使LPF的截止频率很低,其频率特性仍然能够保持相当稳定,这是利用LPF实现窄带化的优点。为了适应不同的被测信号频率特性的需要,LPF的截止频率常做成可调的。

传统的滤波器一般采用分立器件来实现,电阻、电容的选取和匹配以及优化灵敏度等问题非常复杂,而且器件参数容易随时间和温度的变化而产生漂移。MAX260系列可编程开关电容滤波器,在一个芯片上集成了运算放大器、电阻和电容,设计时已经优化了灵敏度而且匹配好了元件,因而极大的简化了滤波器的设计,把需要的控制参数加载到芯片以后,几乎不需要外接元件,就可以方便的实现各种滤波器功能.

4.4.2 LPF电路芯片选择

综合考虑,选择MAX260实现低通滤波器。

MAX260系列芯片主要由放大器、积分器、电容切换网络(SCN)和工作模式选择器组成,积分器、电容切换网络和工作模式选择器分别由编程数据M0,M1、F0~F5和Q0~Q6控制。每个芯片内部都含有两个独立的可编程二阶开关电容滤波器,它们可以单独使用,也可以级联成一个四阶的滤波器,滤波器A和B可以采用内部时钟,也可以采用外部时钟,每个滤波器的独立时钟输人端可以连接晶振、RC网络或外部时钟产生器,芯片对外部时钟的占空比没有要求。可编程的参数有中心频率、品质因数和工作模式,输人时钟频率与6位编程代码F0~F5一起决定滤波器的中心频率或截止频率,其中,时钟频率和中心频率之比可实现64级程控调节,品质因数可实现128级程控调节,中心频率和品质因数以及工作模式都可独立编程,互不影响,片内开关和电容提供反馈以控制每个滤波器的中心频率和品质因数,内部电容的开关速率是影响这些参数精度的主要因素。MAX260可以实现中心频率或截止频率在0.01Hz~7.5kHz范围内可调,能够达到设计的要求。



对MAX260具体的编程方法,是先产生编程系数。首先确定滤波器使用的时钟频率和工作模式,然后计算时钟频率和中心频率之比,根据MAX260的数据手册确定工作模式、时钟频率和中心频率之比以及品质因数的二进制编程代码。



评论


技术专区

关闭