HID灯和电子镇流器间的接口设计
相对于两级线路而言,在HID 灯的各个工作阶段,三级线路镇流器自身的可靠性也比较高,因为在HID 电子镇流器线路中,可靠性方面最大的“原理级隐患”来自于工作在高频开关状态的桥式结构。原因是这样的: 如果桥臂开关管体内寄生二极管反向恢复时间长( 如> 150nS) ,则上开关管( 或下管) 开通时刻下管( 或上管) 的体内寄生极管可能还处在续流状态,上管( 或下管) 的开启,会在下管( 或上管) 的体内寄生二极管中引起剧烈的反向恢复, 并进一步引起下管( 或上管) 的误导通,从而导致上下开关管直通而烧毁桥臂。虽然三阶线路也有桥式结构,但是桥臂开关工作于70Hz ~400Hz 的低频,基本避免了高频工作开关管体内寄生二极管反向恢复慢所导致的桥臂烧毁的问题。
而在标准的两极线路中,桥臂开关管工作在高频状态,此时镇流器的可靠性将成为一个突出的问题。为了降低两级线路在可靠性上的风险,HBCF线路有两种应用广泛的改进版本,如图3 所示。改进版本1 ( 图3 左,Philips 方案) : 将标准的半桥改变为双BUCK 结构,引入外部快恢复二极管来给电感电流续流,完全消除了桥式结构MOS 管直通的问题。改进版本2 ( 图3 右,Osram 方案) : 在桥臂两个MOS 管的漏极分别串入肖特基二极管,以便阻断MOS 管体内寄生二极管的工作,再反并联快恢复二极管给电感电流续流,该方案也基本消除了桥臂直通的问题,但是要注意肖特基的温升。
实现HBCF 电感电流临界工作模式( 提高桥臂可靠性) ,同时保证电感电流的峰值是可控的( 以便控制灯电流大小并限制桥臂开关最大电流) , 则在HBCF 控制线路中必须具备两个基本功能,即电感电流峰值检测功能和电感电流过零检测功能,以便快速控制桥臂开关的开通和关断动作。在HBCF线路中,国际知名照明公司都有各自的专用芯片来实现电流峰值检测和电流过零检测的功能,譬如飞利浦公司的CCIC 芯片, 锐高公司的CM3493 芯片等。国内虽然有许多HID 电子镇流器生产企业,但是都没有一款拥有自主知识产权的控制芯片,所以国内HID 镇流器的主线路绝大部分都是采用三级结构。少数几家国内小企业尝试仿造飞利浦公司的CCIC 芯片,并且基于这个仿造芯片,可以制造出两极线路的镇流器。但是这种尝试难免会由于专利壁垒的限制,而在日后受到飞利浦公司的追杀。
4 HID 电子镇流器同灯接口性能测试方法
可以通过一组测试试验来系统地评估HID 镇流器对灯接口匹配性能的好坏,它们分别是: 点火测试、频繁点灯流明维持率测试、长期工作时效测试、EOL 风险测试。
(1) 点火测试
点火测试的目的是评估镇流器的点灯能力。在测镇流器(DUT) 取极限偏差参数时,在规定时间内,最长灯线下,能否多次点亮不同寿命阶段的冷灯和热灯。测试中所用的HID 灯是经过特殊处理的,电极都有不同程度的磨损。
(2) 频繁点灯流明维持率测试
频繁点灯流明测试的目的就是评估镇流器驱动HID 灯时灯电极物质的溅射程度,也可以粗略预测该镇流器和灯配套使用后灯的寿命。通过比较DUT镇流器和基准镇流器对同一批次HID 灯频繁点灯后流明测试结果的差异,就可以判断DUT 镇流器的接口参数设置是否适合。
(3) 长期工作时效测试
长期工作时效测试的目的是综合评估DUT 镇流器长时间驱动HID 灯时灯电极物质的蒸发程度、显色指数的一致性和色温的稳定性。
(4) EOL 风险测试
该测试的目的是评估镇流器和灯配套工作时的安全风险。根据镇流器产品规格书中的数据说明,将6 个待测镇流器取极限偏差参数,在规定时间内按照一定周期多次驱动EOL 灯,并测量在每个驱动周期中,EOL 灯箍颈处的最高温度。测试标准要求决大部分温度点位于350℃ 之下,而且6 个DUT 镇流器都不能失效,否则测试失败。
5 结论
本文围绕两个核心概念———匹配性和可靠性,阐述了HID 电子整流器和灯之间接口设计的基本原理,以及接口性能测试的基本方法。相信本文可以对国内同行有所帮助,同时也希望同行指出文中不足之处,以期改进。
电子镇流器相关文章:电子镇流器工作原理
评论