基于开关电容的模拟可编程设计实现
输入电容中存储的电流量CA计算如下:
q = VinCin -----(5)
电荷只能通过CF移出,因为运算放大器的输入阻抗很高。因此,如果通过CF 传输的电荷量为q,那么输出电压为:
Vout = -q/CF ------(6)
以上方程式中的“-”取决于从接地(虚拟接地)到运算放大器输出电荷的方向。
用方程式5和6,我们得到增益如下:
Vout/Vin = -CA/CF ----- (7) 标准反相放大器方程式
不同电路都能用同样的普通开关电容块创建,满足过滤器、比较器、调制器和积分器等不同设计模块的要求。
我们接下来考虑以下开关电容积分器:

图4:开关电容积分器。
以下方程式定义了本积分器的输出电压:
Vout = Vout z-1 + VinCA/CF -----(8)
根据方程式8,转移函数为:
Gain = Vout/Vin = CA/CF(1-z-1) = 1/s(fsCA/CF) -----(9)
根据方程式9,我们可以发现,增益取决于电容值和开关频率。上述任何一项变化都会改变积分器的增益。
下面,假设我们一开始设计积分器增益为2,随着需求的变化,希望增益为3,那么我们只需将开关频率调节为原先的1.5倍即可。
滤波器也可被看作另一个例子。如果用开关电容电路设计滤波器,我们只需同样改变开关频率就能调节其截止频率。
本文小结
我们可以非常容易地看出上述设计方法的优势所在。可编程解决方案能加快产品投放市场的速度。集成式运算放大器配合可编程电容开关使我们在不大幅 改动原理图或板布局的情况下就能改变设计功能,而固定功能块实施方案则无法实现这一点。从以上示例中,我们可以看出大多数模拟电路的基本构建块由运算放大 器以及一些开关电容组成,我们可通过系统中的其他数字电路控制这些开关,只需改变开关频率就能调节电阻值,从而体现出片上模拟解决方案的可编程属性。高度 集成加上可编程性所带来的出色灵活性有助于节约BOM,减少板上空间占用,而且在任何设计阶段无需太多努力就能修改设计方案。
p2p机相关文章:p2p原理
评论