低压大电流直直变换器的设计
3 电路的设计
3.1 主电路的设计
开关电源的主电路拓扑结构如图2所示,详细参数如下:输入电压为12(1±10%)V,输 出电压为24V,输出电流为12A,工作频率为33kHz。主电路采用的是推挽型电路,主开关管 用的是IRFP064N,在主电路上输入端有两个1000uF/50V并联的输入滤波电容,在输入的电路 的正级接有一个2.2uH的输入滤波电感(电感取值与输出滤波电感一样)。电路中变压器的 设计跟一般变换器所用变压器设计类似,只需注意绕线方式和铜线选择,由于本变换器的电 流过大,故采用多股细线并绕的方式。
在输出端用的是同步整流技术,在低电压大电流功率变换器中,若采用传统的普通二 极管或肖特基二极管整流由于其正向导通压降大(低压硅二极管正向压降约0.7V,肖特基二 极管正向压降约0.45V,新型低电压肖特基二极管可达0.32V),整流损耗成为变换器的主要 损耗,无法满足低电压大电流开关电源高效率,小体积的需要。MOSFET导通时的伏安特性为 一线性电阻,称为通态电阻 RDS ,低压MOSFET新器件的通态电阻很小,如: IRF2807(75V,82A)、IRL2910(100V,55A)通态电阻分别为0.013Ω、0.O26Ω,它们在通过20A 电流时,通态压降不到0.2V。另外,功率MOSFET开关时间短,输入阻抗高,这些特点使得MOSFET 成为低电压大电流功率变换器首选整流器件。
MOSFET的栅-源问的硅氧化层耐压有限,一旦 被击穿则永久损坏,所以实际上栅-源电压最大值在50-75V之间,如电压超过75V,应该在栅 极上接稳压管.并从成本综合考虑,选用IRF2807。需要特别指出的是图中MOS管做为整流 管的接法,有,有些读者可能会认为接法有误,这是由于普通的参考用书没有描述电力MOSFET的正栅压反向输出特性。实际上,电力MOSFET除需要介绍非饱和区、饱和区和截 止区外,还应考虑反向电阻区,反向电阻区与正向电阻区有相类似的沟道特性。这是由于变 压器二次侧电压为交变方波,整流管要承受反压但电力MOSFET是逆导器件,若工作在正向 电阻区将无法整流。
在电压输出部分,使用了LC滤波电路,电感电容参数是根据LC滤波中K式滤波器滤波 特性曲线及计算公式计算出来的,并在实验后做了调整。(K式滤波是指串臂阻抗和并臂阻抗 的乘积是一个不随频率变化的常数,量纲为电阻)
基尔霍夫电流相关文章:基尔霍夫电流定律
评论