新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 优化电源模块性能的PCB布局技术

优化电源模块性能的PCB布局技术

作者: 时间:2011-12-29 来源:网络 收藏

中接地的引脚(包括裸焊盘)、输入和输出电容器、软启动电容以及反馈电阻,都应连至上的回路层。此回路层可作为电感电流极低的返回路径以及下文将谈及的散热装置使用。

3.gif

图3 及作为热阻抗的示意图

反馈电阻也应放置在尽可能靠近FB(反馈)引脚的位置上。要将此高阻抗节点上的潜在噪声提取值降至最低,令FB引脚与反馈电阻中间抽头之间的走线尽可能短是至关重要的。可用的补偿组件或前馈电容器应该放置在尽可能靠近上层反馈电阻的位置上。

散热设计建议

模块的紧凑在电气方面带来好处的同时,对散热设计造成了负面影响,等值的功率要从更小的空间耗散掉。考虑到这一问题,SIMPLE SWITCHER模块封装的背面设计了一个单独的大的裸焊盘,并以电气方式接地。该焊盘有助于从内部MOSFET(通常产生大部分热量)到间提供极低的热阻抗。

从半导体结到这些器件外封装的热阻抗(θJC)为1.9℃/W。虽然达到行业领先的θJC值就很理想,但当外封装到空气的热阻抗(θCA)太大时,低θJC值也毫无意义!如果没有提供与周围空气相通的低阻抗散热路径,则热量就会聚集在裸焊盘上无法消散。那么,究竟是什么决定了θCA值呢?从裸焊盘到空气的热阻完全受PCB设计以及相关的散热片的控制。

现在来快速了解一下如何进行不含散热片的简单PCB散热设计,图3示意了模块及作为热阻抗的PCB。与从结到裸片焊盘的热阻抗相比,由于结与外封装顶部间的热阻抗相对较高,因此在第一次估计从结到周围空气的热阻(θJT)时,我们可以忽略θJA散热路径。

散热设计的第一步是确定要耗散的功率。利用数据表中公布的效率图(η)即可轻松计算出模块消耗的功率(PD)。

4.gif

然后,我们使用设计中的最高温度TAmbient和额定结温TJunction(125℃)这两个温度约束来确定PCB上封装的模块所需的热阻。

最后,我们使用PCB表面(顶层和底层上均具有未损坏的一盎司铜散热片和无数个散热孔)的对流热传递的最大简化的近似值来确定散热所需的板面积。

6.gif



评论


相关推荐

技术专区

关闭