新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 电源设计指南:拓扑结构(三)

电源设计指南:拓扑结构(三)

作者:时间:2012-05-14来源:网络收藏

SMPS及转换原理

本文引用地址:http://www.eepw.com.cn/article/177252.htm

根据电路的不同,SMPS可以将直流输入电压转换成不同的直流输出电压。实际应用中存在多种,比较常见有三种基本类型,按照功能划分为(参见图2):降压(buck)、升压(boost)、升/降压(buck-boost或反转)。下面还将讨论图2中所画出的电感充电/放电通道。

三种拓扑都包括MOSFET开关、二极管、输出电容和电感。MOSFET是拓扑中的有源受控元件,与控制器(图中没给出)连接,控制器输出脉宽调制(PWM)方波信号驱动MOSFET栅极,控制器件的关断或导通。为使输出电压保持稳定,控制器检测SMPS输出电压,并改变方波信号的占空比(D),即MOSFET在每个开关周期(TS)导通时间。D是方波导通时间和周期的比值(TON/TS),直接影响SMPS的输出电压。两者之间的关系在等式4和等式5给出。

MOSFET的导通和关断状态将SMPS电路分为两个阶段:充电阶段和放电阶段,分别表示电感中的能量传递状态(参见图2的环路)。充电期间电感所储存的能量,在放电期间传递给输出负载和电容上。电感充电期间,输出电容为负载供电,维持输出电压稳定。根据拓扑不同,能量在电路元件中循环传递,使输出电压维持在适当的值。

在每个开关周期,电感是到负载能量传输的核心。如果没有电感,MOSFET切换时,SMPS将无法正常工作。电感(L)中所储存的能量(E)取决于电感电流值(I):

在每个开关周期中(图3),电感两端的电压恒定,因此电感中的电流线性变化。根据基尔霍夫电压环路定律,可以得到开关过程中电感两端电压,注意极性以及VIN/VOUT的关系。例如,升压转换器的放电期间,电感两端电压为-(VOUT-VIN)。因为VOUT>VIN,所以电感两端电压为负。

充电期间,MOSFET导通,二极管反向偏置,能量从传递给电感(图2)。由于电感两端电压(VL)为正,电感电流将逐渐上升。同时,输出电容将前一个周期存储的能量传递给负载,以保持输出电压的恒定。

20092721465647975.jpg

图3.稳态时电感的电压、电流特性。

放电期间,MOSFET关断,二极管正向偏置并导通。由于此时不再对电感充电,电感两端电压极性反转,并且将能量释放给负载,同时补充输出电容的储能(图2)。放电时,电感电流逐渐下降,放电电流如上述关系式所示。

充电/放电周期循环,并保持一个稳定的开关状态。在电路建立稳态的过程中,电感电流逐渐达到其稳定值,该电流是直流电流和电路在两个阶段切换时所产生的交流电流(或电感纹波电流)之和(图3)。直流电流的大小与输出电流成正比,也取决于电感在SMPS拓扑中的位置。纹波电流需要经过SMPS滤波,以获得真正的直流输出。滤波由输出电容完成,它对于交流信号呈现较低的阻抗。不需要的输出纹波电流通过输出电容旁路,并且当电流对地放电时保持电容电荷恒定。因此,输出电容还起到稳定输出电压的作用。实际应用中,输出电容的等效串联电阻(ESR)产生的输出电压纹波与电容的纹波电流成正比。

由此可见,能量在电源、电感和输出电容间传递,保持输出电压恒定,为负载供电。那么,通过SMPS间的能量传递如何确定输出电压和输入/输出电压转换比?如果能够理解电路作用一个周期性波形的稳态过程,便可以很容易的计算出这些数值。稳态期间,有一个变量在重复周期TS的开始阶段与结束阶段相等。对于电感而言,如上所述,其电流周期性的充电与放电,因此其电流在PWM周期的开始阶段应该与结束阶段相等。这意味着,电感电流在充电过程的变化量(ΔICHARGE)应等于在放电过程的变化量(ΔIDISCHARGE)。建立充电和放电期间电感电流变化的等式,可得到下面的表达式:

简而言之,在不同的工作周期,电感电压和时间的乘积相等。因此,从图2的SMPS电路中,我们可以很容易的得到稳态时的电压和电流转换比。对于降压电路,根据充电电路的基尔霍夫电压环路可得到电感两端的电压为(VIN-VOUT)。同理,放电过程中电路电感两端的电压为-VOUT。根据等式3,可得出电压的转换比为:

从这一系列等式可以看出,降压转换器的输出相比VIN增大了D倍,而输入电流则比负载电流大D倍。表1列举了图2中所示拓扑的转换比。有些复杂的拓扑结构可能难以分析,但是利用这个方法解等式3和5可得到全部SMPS的转换比。

四、三电平DC/DC变换器的拓扑结构及其滑模控制方法

摘要:首先阐述了三电平DC/DC变换器拓扑的推导过程,给出了6种非隔离三电平DC/DC变换器和5种隔离三电平DC/DC变换器拓扑结构;分析了三电平DC/DC变换器中,如何滤波电路的参数以提高其动态品质;最后以Buck三电平变换器和Buck?Boost三电平变换器为例,分析了滑模控制在三电平DC/DC变换器中的应用前景。

1引言

J.RenesPinheiro于1992年提出了零电压开关三电平DC/DC变换器[1],该变换器的开关应力为输入直流电压的1/2,非常适合于输入电压高、输出功率大的应用场合。因此,三电平DC/DC变换器引起了广泛关注,得到了长足发展。目前,三电平技术在已有的DC/DC变换器中,均得到了很好的应用。部分三电平DC/DC变换器在降低开关应力的同时,还大大减小了滤波器的体积,提高了变换器的动态特性。三电平技术的应用,充分体现了“采用有源控制的方式减小无源元件体积”的学术思想。

2三电平DC/DC变换器拓扑的推导与发展

2.1三电平两种开关单元

文献[2]分析了三电平DC/DC变换器的推导过程:用2只开关管串联代替1只开关管以降低电压应力,并引入1只箝位二极管和箝位电压源(它被均分为两个相等的电压源)确保2只开关管电压应力均衡。电路中开关管的位置不同,其箝位电压源与箝位二极管的接法也不同。文中提取出2个三电平开关单元如图1所示。图1(a)中,箝位二极管的阳极与箝位电压源的中点相连,称之为阳极单元;图1(b)中,箝位二极管的阴极与箝位电压源的中点相连,称之为阴极单元。

2.2六种非隔离三电平DC/DC变换器

三电平DC/DC变换器的推导过程可以总结为以下三个步骤:一是将基本变换器的开关管替换为相互串联的2只开关管;二是寻找或构成箝位电压源;三是从箝位电压源的中点引入1只箝位二极管到相互串联的2只开关管的中点,箝位二极管的放置与2只开关管与箝位电压源联接的地方有关。

为了确保2只开关管的电压应力相等,三电平DC/DC变换器一般由图1所示的两种开关单元共同组成。文献[2]所分析的半桥式三电平DC/DC变换器的推导思路,可以推广到所有的直流变换器中,由此提出了一族三电平DC/DC变换器拓扑,包括Buck,Boost,Buck?Boost,Cuk,Sepic,Zeta等6种非隔离的三电平DC/DC变换器,但是这6种非隔离的三电平DC/DC变换器的输入与输出是不共地的,这个缺点限制了它们的使用范围。

(a)三电平阳极单元(b)三电平阴极单元

图1两种三电平开关单元

文献[10]提出将隔直电容引入到输入输出不共地的非隔离三电平DC/DC变换器中,并对变换器结构进行改进,使其输入与输出共地。改进后的变换器保留了改进前的变换器的所有优点,即:开关管的电压应力为输入电压的1/2;可以大大减小储能元件的参数;续流二极管的电压应力为输入电压的1/2。图2所示为6种输入输出共地的非隔离三电平DC/DC变换器。

(a)Buck三电平DC/DC变换器(b)Boost三电平DC/DC变换器(c)Buck-Boost三电平DC/DC变换器

(d)Cuk三电平DC/DC变换器(e)Sepic三电平DC/DC变换器(f)Zeta三电平DC/DC变换器

图2非隔离式三电平DC/DC变换器


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭