新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 带隙电压基准源的设计与分析

带隙电压基准源的设计与分析

作者: 时间:2012-06-29 来源:网络 收藏

组成:第一部分为启动电路,主要由MSA,MSB,MSC三个管子的性能来决定电路的自启动;第二部分为放大器,采用二级Miller电路,并且从带隙部分获得偏置电流;第三部分与Banba结构基本一致。
本结构的优点体现在以下几个方面:
(1)在传统的带隙电路中,输出VBE约为1.25 V,这就限制了电源在1 V以下的应用,而这个结构的Vref通过两个电流的和在电阻上的压降来实现:一个电流与三极管的VBE成正比,另一个与VT成正比,产生的电流通过MOS管M3镜像到输出电流,再通过输出负载电阻R4决定输出参考,方便改变所需产生的电压值。
(2)放大器中采用Miller补偿可以增加稳定性,Hironori Banba等采用的是以NMOS为差分输出管的单级运放,这样要达到较低电源电压则需要非标准的耗尽型器件,对工艺的转换性较差,所以文中采用PMOS管作为差分输入。由于放大器在电路中起的作用是保证1、2电压的相等,达到对核心部分没有影响的效果,所以此结构是对Banba结构的一种改进。
(3)启动电路使电路节点处于简并状态时也可以自动进入正常工作状态,在Banba结构中,其自启动方法是采用一个额外的脉冲(Power On -Reset Signal)来实现,这在模拟与混合电路中较少用到,所以文中添加了启动部分的电路,虽然增加了元件数,却能使制造和启动过程简单实用。
2.2 自启动模块及放大电路模块
在放大器的偏置电路中,如果初始状态节点2的电压为0,则出现简并,在没有外界刺激情况下不会工作,这在实际应用中是不可接受的,所以必须去除简并点,方法如图4所示,由3个MOS管形成开启电路。由于PMOS管MSA的栅极接地,所以MSA始终导通,这样使得S点电平升高,S也是MSB管的栅极,因此MSB管导通,它的漏极电平降低,这样如果启动点为PMOS栅极,该PMOS管导通,电路可以开始工作。最后还必须使MSB脱离,当电路开始正常工作时,MSC管开启,这样就再次使5节点电平下降,MSB管由此关断,脱离了启动部分。

本文引用地址:https://www.eepw.com.cn/article/176810.htm

e.JPG


带隙电路中的放大器主要作用是使两个输入点的电平相等,所以只要增益足够就可以,另外为了防止振荡,相位裕度也要足够,其他指标不是特别重要。图5为放大器的核心部分,各部分作用:MA1、MA2为第一级差分放大,MA6为第二级放大,MA5、MA7从带隙部分偏置电流分配给放大部分MOS管。Cc为密勒电容,将主次极点分离,也可增大相位裕度。



关键词: 分析 设计 基准 电压

评论


相关推荐

技术专区

关闭