无极灯的温度特性研究
等组成,是把能量从高频发生器耦合到灯泡内的器件。磁芯和高温线的作用是产生高频磁场。通过中间的导热棒,线圈产生的多余热能和放电通过金属底座传导到外面。耦合器通常采用双层绕制:一层输送电流,另一层用来降低公共模式终端电压的干扰。
灯泡是无极灯的发光器件,主要由泡壳、内管、汞齐、荧光粉等组成。工作时,泡体内除惰性缓冲气体外,还有主、辅汞齐释放出来的汞蒸气。主汞齐位于泡壳底部的短管中,可提供稳定工作时的汞原子。辅助汞齐放置在内管壁的铟网上,提供启动时的汞原子,当灯关掉时,铟网快速冷却,收集了灯泡中的大部分汞原子,以准备下次启动。无极灯采用的汞齐分低温汞齐、中温汞齐和高温汞齐,选择合适的汞齐能保证无极灯在一个较宽的温度范围内保持稳定的光输出。荧光粉目前多采用三基色荧光粉,它能将汞原子激发跃迁产生的波长为253. 7nm 的紫外线转化为可见光。
2 无极灯的工作原理
无极灯的工作原理如图2 所示。高频发生器产生2. 65MHz 的高频电压、电流,当高频电流通过耦合器时,便产生一个高频电磁场,变化的磁场产生一个垂直于磁场变化的电场( 见图2 ( a) )。磁场产生的电场加速灯泡内部放电空间的电子,当电子能量达到一定值时,电子与灯泡内的惰性气体和汞原子发生碰撞,使灯泡内的气体雪崩电离,形成等离子体。等离子体受激原子返回基态时,辐射出253. 7nm 的紫外光子,紫外光子激发灯泡壳内壁的荧光粉产生可见光( 见图2( b) )。
图2 无极灯的工作原理图
无极灯泡体的温度( 包括内部气体温度) 通过影响无极灯的冷端温度,即置于冷端的汞齐的温度影响无极灯的汞蒸气压,从而影响光效。为了分析无极灯泡体的温度特性,研究泡体温度对冷端温度的影响,我们采用美国FLIR 公司的ThermaCAM PM525E 型红外热像仪红外热像仪
红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 [全文]
对150W 涂荧光粉和不涂荧光粉的无极灯的泡体温度进行了测量( 测量条件:距离2m,环境温度21°C) ,结果如图3 所示。
从图3( a) 可以看出,点灯后,有荧光粉无极灯的温度先迅速增加,在1min 达到70℃ 左右,在7min 左右达到第一次峰值( 约112℃) 后温度稍有下降,随后又继续升高。灯点亮20min 左右,达到实验范围内的极大值116℃。同样,从图3 ( b) 可知,点灯后,无荧光粉无极灯的温度先迅速增加,在1min 达到70℃ 左右,在7min 左右达到第一次峰值( 约124℃) 后温度稍有下降,随后又继续升高,在20min左右达到实验范围内的极大值135℃。比较有、无荧光粉的无极灯温升特性可知,它们具有相似形状的温升曲线,但温升幅值不同,造成这种现象的原因是:无极灯点亮后,灯泡内的电子在耦合器产生的高频电磁场作用下运动,撞击灯内的气体原子产生等离子体,等离子体与玻璃泡体内壁(或荧光粉层等) 相互作用产生大量的热。此外,铁氧体磁芯和线圈也会产生大量的热。这些热量造成无极灯泡体的温度升高。灯点亮7min 左右,金属制成的底座开始散热,使温度下降。当底座获得的热量与散出的热量平衡时,温度不再下降。而灯泡内放电及耦合器产生的热量继续增加,使得放电产生的热量大于底座散出的热量,灯泡温度继续升高。
对于无极灯有、无荧光粉泡体温升幅值相差较大的这种情况,可根据物质的比热容公式的变换形式Q= cmΔt (Q 是热量,c 为物质的比热容,m 为物质的质量,Δt 为温度的变化量) 来分析。由上述公式可知,当放电产生相同的热量时,由于荧光粉的存在,有荧光粉的系统比无荧光粉的系统存在更多的物质,荧光粉也会从系统吸收热量升高自身温度,所以有荧光粉时,因荧光粉吸收部分热量使得系统温升幅值低于无荧光粉的系统。对于熄灯后的温度特性,通过比较图3( a) 和图3( b) 中无极灯熄灭后的温度曲线发现,2 者的温度曲线非常接近。这表明,这种无极灯金属底座的散热效果基本一致。
>电子变压器相关文章:电子变压器原理
评论