新闻中心

EEPW首页 > 消费电子 > 设计应用 > 视频压缩技术解析

视频压缩技术解析

作者: 时间:2012-02-23 来源:网络 收藏

1. 奈奎斯特取样定理
理想取样时, 只要取样频率大于或等于模拟信号中最高频率的两倍, 就可以不失真地恢复模拟信号, 称为奈奎斯特取样定理。 模拟信号中最高频率的两倍称为折叠频率。
2. 亚奈奎斯特取样
按取样定理, 若取样频率fs小于模拟信号最高频率fmax的2倍会产生混叠失真, 但若巧妙地选择取样频率, 令取样后频谱中的混叠分量落在色度分量和亮度分量之间, 就可用梳状滤波器去掉混叠成分。

本文引用地址:https://www.eepw.com.cn/article/165860.htm

3. 均匀量化和非均匀量化
在输入信号的动态范围内, 量化间隔幅度都相等的量化称为均匀量化或线性量化。 对于量化间距固定的均匀量化, 信噪比随输入信号幅度的增加而增加, 在强信号时固然可把噪波淹没掉, 在弱信号时, 噪波的干扰就十分显著。
为改善弱信号时的信噪比, 量化间距应随输入信号幅度而变化, 大信号时进行粗量化, 小信号时进行细量化, 也就是采用非均匀量化(或称非线性量化)。

非均匀量化有两种方法, 一是把非线性处理放在编码器前和解码器后的模拟部分, 编、 解码仍采用均匀量化, 在均匀量化编码器之前, 对输入信号进行, 这样等效于对大信号进行粗量化, 小信号进行细量化; 在均匀量化解码器之后, 再进行扩张, 以恢复原信号。 另一种方法是直接采用非均匀量化器, 输入信号大时进行粗量化(量化间距大) , 输入信号小时细量化(量化间距小)。 也有采用若干个量化间距不等的均匀量化器, 当输入信号超过某一电平时进入粗间距均匀量化器, 低于某一电平时进入细间距量化器, 称为准瞬时压扩方式。

通常用Q表示量化, 用Q-1表示反量化。 量化过程相当于由输入值找到它所在的区间号, 反量化过程相当于由量化区间号得到对应的量化电平值。 量化区间总数远远少于输入值的总数, 所以量化能实现数据。 很明显, 反量化后并不能保证得到原来的值, 因此量化过程是一个不可逆过程, 用量化的方法来进行编码是一种非信息保持型编码。 通常这两个过程均可用查表方法实现, 量化过程在编码端完成, 而反量化过程则在解码端完成。

对量化区间标号(量化值)的编码一般采用等长编码方法。 当量化分层总数为K时, 经过量化压缩后的二进制数码率为lbK比特/量值。 在一些要求较高的场合, 可采用可变字长编码如哈夫曼编码或算术编码来进一步提高编码效率。
6.1.3 ITU-R BT.601分量数字系统
数字信号是将模拟信号经过取样、 量化和编码后形成的。 模拟电视有PAL、 NTSC等制式, 必然会形成不同制式的数字信号, 不便于国际数字视频信号的互通。 1982年10月, 国际无线电咨询委员会(CCIR, Consultative Committee for International Radio)通过了第一个关于演播室彩色电视信号数字编码的建议, 1993年变更为ITU-R(国际电联无线电通信部分, International Telecommunications Union-Radio communications Sector)BT.601分量数字系统建议。

BT.601建议采用了对亮度信号和两个色差信号分别编码的分量编码方式, 对不同制式的信号采用相同的取样频率13.5 MHz, 与任何制式的彩色副载波频率无关, 对亮度信号Y的取样频率为13.5 MHz。 由于色度信号的带宽远比亮度信号的带宽窄, 对色度信号U和V的取样频率为6.75 MHz。 每个数字有效行分别有720个亮度取样点和360×2个色差信号取样点。 对每个分量的取样点都是均匀量化, 对每个取样进行8比特精度的PCM编码。
这几个参数对525行、 60场/秒和625行50场/秒的制式都是相同的。 有效取样点是指只有行、 场扫描正程的样点有效, 逆程的样点不在PCM编码的范围内。 因为在数字化的视频信号中, 不再需要行、 场同步信号和消隐信号, 只要有行、 场(帧)的起始位置即可。 例如, 对于PAL制, 传输所有的样点数据, 大约需要200 Mb/s的传输速率, 传输有效样点只需要160 Mb/s左右的速率。
色度信号的取样率是亮度信号取样率的一半, 常称作4∶2∶2格式, 可以理解为每一行里的Y、 U、 V的样点数之比为4∶2∶2。
6.1.4 熵编码
熵编码(Entropy Coding)是一类无损编码, 因编码后的平均码长接近信源的熵而得名。 熵编码多用可变字长编码(VLC, Variable Length Coding)实现。 其基本原理是对信源中出现概率大的符号赋以短码, 对出现概率小的符号赋以长码, 从而在统计上获得较短的平均码长。 所编的码应是即时可译码, 某一个码不会是另一个码的前缀, 各个码之间无需附加信息便可自然分开。

1. 霍夫曼(Huffman)编码
霍夫曼(Huffman)编码是一种可变长编码, 编码方法如图6-2所示。
(1) 将输入信号符号以出现概率由大至小为序排成一列。
(2) 将两处最小概率的符号相加合成为一个新概率, 再按出现概率的大小排序。
(3) 重复步骤(2), 直至最终只剩两个概率。
(4) 编码从最后一步出发逐步向前进行, 概率大的符号赋予“0”码, 另一个概率赋予“1”码, 直至到达最初的概率排列为止。
图 6-2 霍夫曼(Huffman)编码

图 6-2 霍夫曼(Huffman)编码



关键词: 解析 技术 压缩 视频

评论


相关推荐

技术专区

关闭