高频链逆变技术发展综述
相点,可以实现AC/AC或者DC/AC功能,并且功率可以双向流动,以及功率因数任意调整。这种变换型式存在如下主要缺点:本文引用地址:https://www.eepw.com.cn/article/156576.htm
1)采用工频变压器,体积大、笨重;
2)具有音频噪音;
3)输入电压和负载波动时,系统响应速度慢。
2.1.2高频变压器隔离型
Sood和Lipo用实验验证了在谐振转换器中使用双向GTO实现高频链电源分布系统的可行性[2],如图2所示。这种变换型式的主要优点是
1)采用高频变压器,体积小,重量轻;
2)谐振软开关有利于降低开关损耗、提高效率。
主要缺点是
1)开关器件的耐流能力和耐压能力大;
2)采用双向开关,开关数目多,成本较高;
3)采用PDM控制方式,需要严格的同步关系。
2.2DC/DC变换型
这种类型高频链逆变器是目前应用最广泛的单向功率流动电压源高频链逆变器方案[3][4][5][6],它的经典电路如图3所示。该拓扑是在直流侧和逆变器之间插入一级DC/DC变换器,使用高频变压器实现电压调整和电气隔离。很明显,它具有三级功率变换过程:DC/HFAC/DC/LFAC。这种变换型式的主要优点是
1)所有开关都是单向的;
2)DC/DC部分和DC/AC部分的控制相对独
立,两部分配合起来比较简单,基本上不需要同步。
主要缺点是
1)功率单向流动;
2)通态损耗大;
3)由于功率级较多,导致可靠性降低。
2.2.1单端正激式高频链逆变器
如图4所示,前级部分由DC/DC正激电路及磁复位电路组成,采用PWM控制技术实现调压,后级部分由吸收电路、LC谐振电路和单相逆变器组成,采用PDM控制技术实现ZVS开关条件,以便减小开关损耗[7]。
2.2.2桥式高频链逆变器[8][9]
1)控制方案1如图5所示,其主电路包括直流电压—PWM高频逆变—高频变压器—快恢复二极管整流—大电容滤波—SPWM逆变器—单相50Hz正弦波输出。
2)控制方案2如图6所示,其主电路包括直流电压—SPWM逆变—高频变压器—(具有正弦包络线的正弦调制高频交流电)—快恢复二极管整流—小电容滤波—工频电压全波整流—50Hz方波驱动—50Hz正弦波输出。
由图5和图6可见,两种控制方案的主电路结构基本相同,但控制方法有所不同。在方案1中前后两部分电路不需要同步,相互独立,但开关损耗大。而在方案2中,50Hz方波驱动时相当于ZVS条件,开关损耗小,但要求严格同步。另外,由方案2可以实现三相
图3DC/DC变换型
图7双向周波变流型高频链逆变器
图8硬开关PWM控制方式
图9LC谐振方式
评论