国内 “第四代半导体” 迎重大突破!


01.氧化镓技术连续取得突破相信很多人都了解以碳化硅、氮化镓为主的第三代半导体材料,但对氧化镓却少有所闻,氧化镓是“第四代半导体”的典型代表,凭借其高耐压、低损耗、高效率、小尺寸等特性,成功进入人们的视野。近两年来,我国在氧化镓的制备上连续取得突破性进展。今年2月28日,中国电科46所成功制备出我国首颗6英寸氧化镓单晶,达到国际最高水平。中国电科46所氧化镓团队从大尺寸氧化镓热场设计出发,成功构建了适用于6英寸氧化镓单晶生长的热场结构,突破了6英寸氧化镓单晶生长技术,可用于6英寸氧化镓单晶衬底片的研制,将有力支撑我国氧化镓材料实用化进程和相关产业发展。2月27日,中国科学技术大学校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。去年12月,铭镓半导体完成了4英寸氧化镓晶圆衬底技术突破,成为国内首个掌握第四代半导体氧化镓材料4英寸相单晶衬底生长技术的产业化公司。去年5月,浙大杭州科创中心首次采用新技术路线成功制备2英寸的氧化镓晶圆,而使用这种具有完全自主知识产权技术生产的2英寸氧化镓晶圆在国际上为首次。作为一种新型超宽禁带半导体材料,氧化镓在微电子与光电子领域均拥有广阔的应用前景,可以有效降低新能源汽车、轨道交通、可再生能源发电等领域在能源方面的消耗。为进一步推动氧化镓产业发展,科技部高新司甚至已于2017年便将其列入重点研发计划。此外,安徽、北京等省市也将氧化镓列为了重点研发对象。
02.能改变半导体行业的新技术?众所周知,以碳化硅、氮化镓为代表的宽禁带半导体材料,正凭借耐高温、抗高压、开关速度快、效率高、节能、寿命长等特点被国内外相关企业持续关注和布局。目前,宽禁带半导体发展势头正猛,“超禁带半导体”也悄然入局。氧化镓作为第四代半导体的代表,被视为“替代碳化硅和氮化镓”的新一代半导体材料。氧化镓是一种无机化合物,化学式为Ga2O3(三氧化二镓),是一种宽禁带半导体。氧化镓拥有超宽带隙(4.2-4.9eV)、超高临界击穿场强(8MV/cm)、超强透明导电性等优异物理性能。



03.导热性低、成本高等问题尚待优化在上文中,我们已经详细的讲解了氧化镓作为新一代半导体材料所具备的优势,但要像大规模落地,还有一些需要解决的缺点:一是氧化镓导热性低,在目前已知的所有可用于射频放大或功率切换的半导体中,氧化镓的导热性最差。其热导率只有金刚石的1/60,碳化硅(高性能射频氮化镓的基底)的1/10,约为硅的1/5。低热导率意味着晶体管中产生的热量可能会停留,有可能极大地限制器件的寿命。二是成本问题,上文中提到氧化镓器件的损耗更低,但要知道氧化镓衬底主要采用导模法进行生产,导模法需要在1800℃左右的高温、含氧环境下进行晶体生长,对生长环境要求很高,需要耐高温、耐氧,还不能污染晶体等特性的材料做坩埚,综合考虑性能和成本只有贵金属铱适合盛装氧化镓熔体。而铱的价格极其昂贵,接近黄金的三倍,仅坩埚造价就超过600万,从大规模生产角度很难扩展设备数量,另一方面,铱只能依赖进口,给供应链带来很大风险。三是氧化镓器件目前仅有N型材料,而一般大规模应用的半导体材料需要P型和N型共同存在,形成PN结从而参照Si的器件结构和工艺直接制造MOS、IGBT等多种器件,才能有广泛的市场应用。
04.市场新风口,未来前景有多大?近年来,以碳化硅、氮化镓为主的第三代半导体材料需求爆发,成为资本市场追逐的对象。如今,以氧化镓为代表的第四代半导体材料的闪亮登场,有望成为半导体赛道的新风口。根据日本氧化镓企业FLOSFIA预计,2025年氧化镓功率器件市场规模将开始超过氮化镓,2030年达到15.42亿美元(约人民币100亿元),达到碳化硅的40%,达到氮化镓的1.56倍。单看新能源车市场,2021年全球新能源车销量650万辆,新能源汽车渗透率为14.8%,而碳化硅的渗透率为9%,随着新能源车的渗透率提高,市场规模将逐步扩大,目前碳化硅、氮化镓还远未达到能够左右市场的程度,相比之下氧化镓的发展窗口非常充裕。


05.日本遥遥领先,国内奋起直追纵观氧化镓发展历史,日本遥遥领先全球并引领其商业化。早在2008年,京都大学的藤田教授就发布了氧化镓深紫外线检测和SchottkyBarrier Junction、蓝宝石(Sapphire)晶圆上的外延生长(Epitaxial Growth)等研发成果。2012年,日本率先获得2英寸氧化镓材料,并于2014年实现了批量产业化,随后又实现了4英寸氧化镓材料的突破及产业化;2015年,推出了高质量氧化镓单晶衬底;2016年又推出了同质外延片,此后基于氧化镓材料的器件研究成果开始爆发式出现,各国开始争相布局。在国际上,有三家公司作为氧化镓衬底、晶圆和器件的开发商和制造商脱颖而出,分别是美国的Kyma Technologies和日本的FLOSFIA和Novel Crystal Technology。2021年,Novel CrystalTechnology全球首次量产了100mm 4英寸的“氧化镓”晶圆。2022年,Novel CrystalTechnology与大阳日酸株式会社、东京农业技术大学合作,将备受关注的氧化镓(β-Ga2O3)用HVPE法成功地在6英寸晶圆上沉积。FLOSFIA则是在2022年,与三菱重工、丰田汽车子公司电装和大规模生产使用氧化镓(硅的替代品)作为半导体材料的功率半导体。国内方面也有不少企业开始布局氧化镓领域,比如:北京镓族科技,成立于2017年,专业从事超宽禁带(第四代)半导体氧化镓材料开发及器件芯片应用产业化的国家高新技术产业公司,涵盖完整的产业中试产线,具备研发和小批量生产能力,初步构建了氧化单晶衬底、氧化镓异质/同质外延衬底生产和研发平台。杭州富加镓业,成立于2019年,是由中国科学院上海光学精密机械研究所与杭州市富阳区政府共建的“硬科技”产业化平台——杭州光机所孵化的科技型企业,专注于宽禁带半导体材料研发,最初技术来源于中科院上海光机所技术研发团队,主要从事氧化镓单晶材料设计、模拟仿真、生长及性能表征等工作。北京铭镓半导体,成立于2020年,是国内专业从事氧化镓材料及其功率器件产业化的高新企业,专注于新型超宽禁带半导体材料氧化镓的高质量单晶与外延衬底、高灵敏度日盲紫外探测器件和高频大功率器件等产业化高新技术的研发。目前,铭镓半导体已实现量产2英寸氧化镓衬底材料,突破4英寸技术,是目前唯一可实现国产工业级“氧化镓”半导体晶片小批量供货中国厂家,已完成两轮融资。深圳进化半导体,立于2021年,是一家专业从事第四代半导体氧化镓(Ga2O3)晶片研发、生产和销售的半导体企业,是少有的拥有氧化镓的单晶炉设计、热场设计、生长工艺、晶体加工等全系列自主知识产权技术的氧化镓单晶衬底生产商之一。
06.氧化镓产业化初期,国产“突围”有望目前,国内对于氧化镓半导体十分看重,早在2018年,我国已启动了包括氧化镓、金刚石、氮化硼等在内的超宽禁带半导体材料的探索和研究。2022年,科技部将氧化镓列入“十四五”重点研发计划。除了上文列举的几家国内厂商以外,国内氧化镓材料研究单位还有中电科46所、上海光机所等等,还有数十家高校院所积极展开氧化镓项目的研发工作,积累了丰富的技术成果。随着市场需求持续旺盛,这些科研成果有望逐步落地。由于全球氧化镓产业均在产业化的前期,这或许可以帮助国产半导体在全球半导体竞争中实现“突围”。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。