- 任何电器要想开始工作,都离不开供电,而要供电就离不开电源。电源有两个极即:电源正极(+)、电源负极(-),电源要实现向负载供电,必须是电源正极(+)流出电流经负载再流回电源负极(-),这时可以说这个电路构成了供电电流回路了,或者负载得电了,负载也可以开始工作了,如果其中的某一环节出现断路(开路),那就不能构成供电电流回路,负载就得不到供电,负载也就不能开始工作。很简单嘛,但当一个完整电路中,两个或多个电源时,要想电路正常工作,那其中必有多个电流回路,多个电流回路在某一部分电路还存在相互叠加,但具体到某个电
- 关键字:
电源管理 电源 电路设计
- 稳健的系统通常允许使用多个电源。使用多个不同电源为器件供电时,需要部署若干开关以将电源相互分隔开,以防损坏。对此,固然可在电源路径中使用多个二极管来实现,但更灵活、更高效的方法是使用理想二极管。本文将介绍此类理想二极管的优势。文中将展示两个版本的理想二极管:一个是无需根据电压电平选择输入电源轨的理想二极管;另一个版本则更加简单,始终由更高的电压为系统供电。
- 关键字:
理想二极管 电源 ADI
- 今天给大家分享的是DC-DC 升压电路。这里主要是关于:DC-DC 升压电路、DC-DC 升压模块原理、如何构建DC-DC 升压电路。一、什么是 DC-DC 转换器?DC-DC 转换器是一种电力电子电路,可有效地将直流电从一个电压转换为另一个电压。DC-DC 转换器在现代电子产品中扮演着不可或缺的角色。这是因为与线性稳压器相比,它们具有多项优势。尤其是线性稳压器会散发大量热量,与 DC-DC 转换器中的开关稳压器相比,它们的效率非常低。DC-DC 升压电路在介绍 DC-DC 转换器 的工作原理之前,看一个
- 关键字:
升压电路 电源
- 先说一下,信号完整性为什么写电源完整性?SI 只是针对高速信号的部分,这样的理解没有问题。如果提高认知,将SI 以大类来看,SI&PI&EMI 三者的关系:所以,基础知识系列里还是得讲讲电源完整性。话不多说,直接上图:01区别记得刚接触信号完整性的时候,对电源完整性(PI)和电源工程师之间的关系是分不清的。后来才渐渐了解这里面的千差万别。简单来说,电源的产生与转化,比如Buck电路,LDO,DC-DC等,源端部分这些是电源工程师来确定的。电源工程师也会进行相关的电源可靠性设计与测试,比如耐
- 关键字:
电源 开关电源
- 电源市场的驱动力已从家用电器和工业机器人转变为电动汽车 ,其中最重要的趋势是通过降低功率损耗、提高运行温度和降低热阻来提高功率模块的功率密度。 未来,可以预期基于逆变器的资源和电源集成电路将成为绿色转型和数字转型的新驱动力。 onsemi推出从PFC(NCP1618)+LLC(NCP13994)+SR(NCP4318)整体方案,功率360W,满足市场高效率高性价比需求。►场景应用图►展示板照片►方案方块图►核心技术优势1. 宽输入电压:90-265VAC
2. PFC多模式运作,适应多种负载,提供效率
- 关键字:
onsemi NCP1618 NCP13994 NCP4318 360W 电源
- 随着汽车摄像头技术的发展,其分辨率、动态范围和帧率不断提高,电源架构也需要根据具体的应用需求进行定制。在本文中,我将回顾三种可以用于为汽车摄像头模块供电的策略:全分立式全集成式部分集成式本文的重点是那些不包含任何数据处理功能的小型摄像头模块,它们输出原始视频数据到单独的电子控制单元(ECU)。这些模块通常用于环视系统、驾驶员监控系统和后视镜替代系统,并通过用于视频数据输出的同轴电缆接收预调节的供电电压。摄像头模块需要多少功率?设计摄像头模块的电源部分时,第一步是对每个电源轨进行简要的功率预算计算。这与通过
- 关键字:
视觉 摄像头 电源 德州仪器
- 固态继电器是机电继电器的半导体等效物,可用于控制电气负载而无需使用移动部件。与使用线圈、磁场、弹簧和各种机械触点来控制和切换电源的标准机电继电器和接触器不同,固态继电器(SSR)没有移动部件,而是利用固态半导体的电气和光学特性来执行其输入到输出的隔离和切换功能。就像普通的机电继电器一样,SSR在其输入和输出触点之间提供完全的电气隔离,其输出类似于传统的电气开关,在不导通时(开路)具有非常高的、几乎无限的电阻,而在导通时(闭合)具有非常低的电阻。固态继电器可以通过使用SCR、TRIAC或开关晶体管输出来设计
- 关键字:
固态继电器 电源,SSR
- 以下内容共22页PPT,以通俗易懂的动画形式讲解什么是DC、AC,以及电源构造、隔离型DC-DC基本电路等知识,全文分为基础篇和技术篇两个部分,无论是新手入门,还是提升技术,都有一定的帮助。
- 关键字:
电源 电源设计
- 变压器的啸叫声主要是由于变压器的激磁成分中含有低频振荡,使得磁芯的磁分子在这个低频磁场下运动,产生机械振动,从而引起周围空气的振动。由于人耳的可闻频率大约在20Hz到20kHz,如果这个空气的振动在此范围内,最终传到人耳朵而被听见。开关电源变压器发生啸叫的原因主要有四个方面:变压器的工艺问题、变压器的环路问题、变压器的铁心问题以及开关电源的负载问题,下面一一分析。(1)变压器的工艺问题①浸漆烘干不到位,导致磁芯不牢固引起机械振动而发出响声;②气隙的长度不适合,导致变压器的工作状态不稳定而发出响声;③线包没
- 关键字:
变压器 电源
- 追求高品质的电力供需,一直是全球各国所想要达到的目标。然而,大量的兴建电厂,并非解决问题的唯一途径。一方面提高电力供给的能量,一方面提高电气产品的功率因数(Power factor)或效率,才能有效解决问题。有很多电气产品,因其内部阻抗的特性,使得其功率因数非常低,为提高电气产品的功率因数, 必须在电源输入端加装功率因数修正电路(Power factor correction circuit)。但是加装电路势必增加制造成本,这些费用到最后一定会转嫁给消费者,因此厂商在节省成本的考量之下,通常会以低价为重而
- 关键字:
电源 开关电源 电路设计
- 本文来源于一个实际项目,需要由一个PMOS作为开关来控制电源的导通。但对实际参数进行测量时,发现PMOS导通时间太短,使得后级电路的dV/dt太大,造成一些不好的影响,因此本文对如何延缓PMOS启动速度进行简单学习与概述性介绍。1 米勒平台上图所示为PMOS的等效模型,其栅极、源极与漏极相互之间都存在寄生电容,分别为CGD,CGS,CDS。MOS管的开启时序如下图所示:开启过程如下:(1)T0-T1阶段,G端输出电平,CGS开始从0充电直至VGS(th),漏极源极之间的电压UDS与电路IDS保持不变,MO
- 关键字:
PMOS电路 开关电路 MOS 电源
- 今天给大家分享的是:6 种抑制开关电源启动浪涌电流的方法一、SMPS的启动浪涌电流开关电流的浪涌电流是指电源开启瞬间流入供电设备的峰值电流,如下所示,由于充电器的输入滤波电容快速充电,峰值电流远大于稳态输入电流。电源应限制交流开关、整流桥、保险丝和EMI滤波器装置可承受的浪涌水平,反复切换回路,交流输入电压不应损坏电源或者导致保险丝熔断。除此之外,浪涌电流也指因电路异常而导致结温超过额定结温的非重复性最大正向过载电流。带浪涌电流限制和不带浪涌电流限制的 SMPS 启动电流下面为开关电源中的启动浪涌电流。如
- 关键字:
开关电源启动浪涌电流 电源 模拟电路
- 本期,为大家带来的是《使用第二级滤波器来减少电压纹波》,我们将深入探讨实现 1mV 输出电压纹波的三种不同控制架构,并提供使用相同电气规格的测试数据以及输出电压纹波、解决方案尺寸、负载瞬态和效率的比较结果。引言具有集成点对点串行通信或模拟前端 (AFE) 的高级处理器和片上系统 (SoC) 的电源需要具有低输出电压纹波,才能保持信号完整性并提高性能。处理器负载点 (POL) 电源的输出电压纹波要求可能低于 2mV,这大约是典型纹波设计的十分之一,这给同步降压转换器带来了严重的设计限制。由于处理器
- 关键字:
输出电压纹波 电源
- 分享一个EMI整改文档,对于EMC来说,接触的案例越多,整改的成功率就越高,整改的方法也越多,从案例中吸取教训,总结经验,避免设计中出现同样的问题。注意:按照文档描述,从下面两张图片可以看出470MHz和940MHz(二次谐波)左右,这两个频点的功率非常高,可能该产品是一款无线产品,对于主频--有意辐射频率来说是有豁免权的,所以只需要注意200MHz之前的频段,由于频谱超标带宽较宽,可以肯定非时钟、晶振辐射超标引起,几乎肯定辐射源在电源了,不过最后的结果,电源部分虽然PASS了,但是后面又引起了其他的频点
- 关键字:
EMI 电源 电路设计
- 做了一个3KW碳化硅电源!(全称:碳化硅3KW图腾柱PFC)它能起到什么作用?具体参数是(第1章)?怎么设计出来的(第2章)?实测情况(第3章)?原理是(第4章)?开源网址入口(第5章)?下文一一为你解答!1.基础参数双主控设计:CW32+IVCC1102输入:AC 110V~270V 20Amax输出:DC 350V-430V 20Amax功率:3000W设计功率:3500W效率:98.5%能用在哪些地方?① 可以作为3KW LLC电源或者全桥可调电源的前级PFC环节;②
- 关键字:
碳化硅 3KW 电源 电路设计
电源介绍
【电源概述】
电源
向电子设备提供功率的装置。
把其他形式的能转换成电能的装置叫做电源。发电机能把机械能转换成电能,干电池能把化学能转换成电能.发电机.电池本身并不带电,它的两极分别有正负电荷,由正负电荷产生电压(电流是电荷在电压的作用下定向移动而形成的),电荷导体里本来就有,要产生电流只需要加上电压即可,当电池两极接上导体时为了产生电流而把正负电荷释放出去,当电荷散尽时,也 [
查看详细 ]
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473