新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于DSP芯片ADMC401的电机控制

基于DSP芯片ADMC401的电机控制

作者:时间:2012-07-02来源:网络收藏

本文引用地址:http://www.eepw.com.cn/article/257395.htm

1.4 光电编码器接口单元(EIU)

内置了一个功能强大的EIU,该单元用于高性能运动控制系统的位置(或速度)反馈,其结构框图如图5所示。


EIU包括一个16位加/减计数器、一个可编程滤波器和一个零标志器。正交编码器信号加到引脚EIA和EIB,零标志器输入和闸门信号分别加到引脚EIZ和EIS上。当在EIZ和EIS引脚上发生外部事件时,EIA和EIB在计数器中的值就被锁存到专用寄存器EIZLATCH和EISLATCH中。EIU内部设有可编程的噪声滤波电路,以消除干扰脉冲对正交计数器正常工作的不良影响。EIU工作的时钟频率等于的指令频率,理想情况下,工作的最高频率可达4.33MHz,相应的最大正交信号频率为17.3MHz。

在应用EIU实现电机转子的速度信号反馈时,可以采用T法(又称测频法),也可以采用M法(又称测周法)。但由于光电编码器制作工艺上的限制,其刻度不可能绝对均匀,有时偏差甚至达到30%,如果不加以软件上的处理,将会大大影响测量精度。要克服光电编码器刻度误差的影响,在较大速度范围内得到高精度的转子速度信号反馈,可以采用改进的T法[2]。

1.5 其它片内外设

除了上述的ADC系统、PWM单元和EIU之外,还集成了很多其它的片内外设电路,包括两个串行通讯接口、12路可编程数字I/O、内置上电复位电路和两路辅助PWM等等。这些外设与ADMCxx系列较早出现的其它芯片类似,如ADMC331和ADMC(F)32x等等。文献[5]中对这些片内外设电路做了较为详细的介绍。

2 ADMC401的性能特点

在现代交流传动系统中,由于采用模拟(或模拟数字混和)电路实现的方案有电路复杂、一致性差、零漂等问题,近年来,国外一些公司纷纷推出专用芯片,使复杂的控制策略得以实现,并且大大简化了系统硬件结构,提高了系统的性能,代表着电气传动控制的发展方向。

目前,国际上的主流专用微处理器有AD公司的ADMCxx系列,TI公司的TMS320C(F)24x系列, Motorola公司的MC68HC16系列,Intel公司的MC96系列[6]。与其它系列的芯片相比,ADMC401比较突出的特点有:

(1)主频较高,为26MIPS。
(2)采用并行体系结构,可在一个指令周期内完成乘加运算,有利于高效求解电机系统数字控制的差分方程。
(3)其指令编码与A-21xx系列和ADMC3xx系列完全兼容,具有良好的可移植性;增加了位操作、平方、四舍五入和全局中断屏蔽等指令,有利于减小软件的规模。
(4)内部程序存储器固化了矢量控制所必需的正余弦函数、CLARK和PARK变换及其逆变换等23个子程序,大大简化了数字控制系统的软件设计。
(5)专设了光电编码器接口及相应的计时器和寄存器。
(6)PWM发生单元的灵活性和可编程性能够更好地满足不同方式的PWM方案。
(7)有高速、高精度、多路输入的ADC系统,并且该ADC系统具有双通道同步采样能力。
(8)ADMC401还具备其它一些特点,以适应工业应用的要求,例如有3种程序引导模式、内置上电复位电路以及低功耗运行模式等。

3 基于ADMC401的交流调速系统

一个以ADMC401作为控制核心的异步电动机矢量控制系统的基本结构如图6所示。


在应用中,ADMC401所实现的软件功能主要包括:

(1)接收光电编码器的信号,并依此计算电机的转速。
(2)采集电机端电压和线电流的瞬时值,用以实时估计电机的运行状态,如磁链的大小和角度、转矩的大小和方向、电机的转速和滑差等。
(3)根据负载的变化和指令信号的变化,按照某种调控规律产生PWM信号,控制逆变器的开关动作,从而对电机运行状态进行调控。
(4)当检测到系统处于非正常运行状态时,闭锁PWM信号,对系统进行保护。
(5)与上位机的数据交换与通信。

随着工业界对节能、噪声抑制及工艺精度的日益重视,许多工业产品都趋向于采用交流电机的变频控制技术,特别是性能优越的矢量控制技术。矢量控制属于计算密集型的控制方法,采样控制周期短、控制算法复杂、而且检测和计算精度高。作为新一代DSP芯片,ADMC401完全可以胜任这些复杂精确的计算和控制任务。包括高性能电机控制在内,ADMC401的应用已经延伸到不间断电源(UPS)、电能监测、继电保护等多个工业领域。针对ADMC401的强大的功能,AD公司及其第三方开发商都推出了相应的评估套件,提供了调试硬件电路和软件控制算法的工具,给开发人员带来了极大的便利。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭