新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 锂离子电池充放电安全简介及电池检测设计

锂离子电池充放电安全简介及电池检测设计

作者:时间:2014-08-12来源:网络收藏

  手机的电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握电池的相关规格和特性,并使用具备完善及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。

本文引用地址:http://www.eepw.com.cn/article/256785.htm

  随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。

  早期手机的电池主要有二种,一是镍氢、镍镉电池,二是电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。 虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。

  智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。

  体积/容量兼具 锂离子电池为电子产品首选

  充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

  

 

  表1 充电电池比较表

  由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。

  延长使用寿命 锂离子电池充/放电压成关键

  一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。

  此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

  锂离子电池充电器首重安全

  充电器是将电池充至其额定电压的设备,而锂离子电池充电器必须具备以下几点特性:

  .可提供固定电流给充电电池

  当电池电压到达最大值且不再上升时,其充电电流便会开始下降,如此可避免对电池过度充电,造成电池损伤;当充电电流降至一定程度时,充电器将停止充电。

  .确保电池具备可使用电压

  电池在充电完成后,若长时间放置不使用会有自然放电的情形出现,为避免电池过度自放电导致电池电压下降,当电池电压低于所设定电压时,充电器会重新开始对电池充电,确保电池在使用时还能维持一定电压。

  四阶段充电简述

  以下使用沛亨半导体的充电集成电路(IC)--AIC6511做锂离子电池充电简介,图1为锂离子电池充电曲线图:

  

 

  图1 锂离子电池充电曲线图

  .Trickle Charge or Pre-Charge

  此时的锂离子电池电压小于3伏特(V),当充电器开始对电池充电时,因锂离子电池的特性,其内部阻抗会很大,故充电器会先以一微小电流对电池进行充电,此时电池电压持续上升。

  .定电流充电(Constant Current Charge, CC Charge)

  当电池充电电压上升至约3伏特时,充电器改以最大充电电流对电池进行定电流充电,此时电池电压持续上升。

  .定电压充电(Constant Voltage Charge, CV Charge)

  当电池充电电压上升至接近锂离子电池的饱和点电压约4.2伏特时,充电器改以定电压模式对电池进行充电,此时充电电流开始下降。

  .Charge Full

  当充电电流降至微小电流时,充电器停止对电池充电。

  电池在充电完成后,若长时间放置不使用会有自然放电的情形出现,为避免电池过度放电导致电池电压下降,电源IC在锂离子电池电压降至4伏特时,会重新开始对电池进行CC Charge模式充电,确保电池在使用时还能维持一定电压。

  锂离子电池充电周期

  因锂离子电池的特性,若锂离子电池在充电之前已深度放电,此时充电器会先以微弱电流对电池进行Pre-Charge充电(各家厂商设定值不同,本文使用范例的充电IC设定值约为10%的最大充电电流),充电时电池电压上升。

  当电池电压上升至约3伏特,充电器改以最大充电电流对电池进行CC Charge,电池电压持续上升。

  当电池充电电压上升至接近锂离子电池的饱和点电压约4.2伏特时,充电器改以CV Charge对电池进行充电,此时充电电流开始下降,当充电电流降至约等于Pre-Charge电流时,充电器停止对电池充电,即完成充电。

  不论是用通用序列总线()或AC电源转换器(Adapter)输入电源对电池充电,当电池开始充电后,若充电时间超过其设定时间,充电器仍然操作于Pre-Charge模式而未进入CC Charge模式,或者仍然操作于CC/CV Charge模式而未进入充电完成状态,则透过IC的充电计时保护功能使充电器停止对电池充电。

  充电计时保护确保电池安全

  图2为本文范例充电IC的脚位示意图,充电计时保护时间由IC外部TMR脚位(Pin 15)的电容CTMR设定,CTMR选择方式如下:

  

 

  图2 AIC6511脚位示意图

  .Pre-Charge充电时间:

  

 

  ……(Minutes)

  .完整充电时间:

  

 

  ……Minutes)

  若电池在充电状态下,充电时间已超过使用者所设定的充电计时保护时间,但充电器却仍尚未脱离当前的充电状态或结束充电,这时IC的充电计时保护功能就会立即启动,迫使充电器停止对电池充电(图3),此时的STAT1(Pin 12)位准为High,LED1指示灯为不亮(图4);若将TMR(Pin 15)脚位连接至GND(Pin 6)脚位,便可以解除使充电计时保护功能。

  

 

  图3 充电器是否正确检测电池充电情形,对于使用安全至关重要

离子色谱仪相关文章:离子色谱仪原理

上一页 1 2 下一页

关键词: 锂离子 电池检测 USB

评论


相关推荐

技术专区

关闭