新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 汽车电子控制器的模态仿真技术研究

汽车电子控制器的模态仿真技术研究

作者:时间:2013-05-22来源:网络收藏


3 建模和仿真计算

3.1几何模型修正

在实际工作中发现,几何模型修正的好坏决定着网格质量的好坏。对复杂的模型来说,不修正几何模型,会增加奇异单元的数目和单元的总数目,导致仿真分析周期变长,分析成本变大,甚至使仿真分析无法进行。该控制器的PCBA上有成百上千个微小的孔和器件,壳体上有过密的硬点和线以及微小的倒圆角等,如果不修正几何模型,在中等配置的HP工作站上无法完成分析。所以在划分网格前,先对该控制器的几何模型进行修正。几何模型修正工作包括:去掉较小的倒圆角和圆孔;隐藏过密的曲线和硬点;切分不规则的几何体;忽略微小电器件等。该控制器修正后的几何模型如图2、图3、图4所示。

3.2网格划分和单元类型选择

控制器的各部件均采用3D实体单元建模。其中PCBA由电路板、电容、电阻、天线、小电路板、插件,插针等部件组成,这些部件的形状较规则,采用一阶六面体单元建模,单元类型为C3D8R,需进行沙漏控制。上、下壳体的形状比较复杂,用二阶四面体进行建模,单元类型为C3D10M。时,不要使用一阶四面体单元,因为一阶四面体单元刚性偏强,容易导致模态频率偏大(下文将会给出验证)。

3.3边界条件设定

对该控制器进行约束时,需固定安装孔内侧面上的所有节点。上壳体的卡槽与PCBA的间隙为零或者过盈配合的部分用Tie命令进行面对面的粘贴;下壳体的滑道和卡槽与PCBA的间隙为零或者过盈配合的部分用Tie命令进行面对面的粘贴;PCB上的较小的电容、电阻及芯片等器件与PCB直接进行面对面粘贴;为避免局部刚度过大对频率和振型造成影响,把较大的电容、电阻、芯片及接插件等电器件的针脚位置的单元与PCB进行粘贴。后文中比对了较大电器件的针脚位置的单元粘贴到PCB上的粘贴方式与面对面直接粘贴到PCB上的方式对PCBA模态频率的影响。证实了把较大电器件的针脚位置的单元粘贴到PCB上的粘贴方式更优越。

3.4材料参数

该型控制器实物的总重205.4克,其中PCBA重为100.1克,壳体重为105.3克,模型总重为204.9克,其中PCBA模型重为99.5克,壳体模型重为103.9克,实物和有限元模型重量的相对误差为1.0%。为了简化计算,认为电路板具有一种等效材料参数,该等效参数是通过对PCB光板的拉伸试验和测量对其测密度得到的。同样认为较大的电器件也具有一种等效材料参数,其弹性模量和泊松比是参考普通芯片的材料得到的,密度是由芯片的总重量除以总体积得到的。


3.5仿真分析结果

利用Abaqus软件对该控制器进行约束,得到的前三阶模态频率和模态振型如图9、图10、图11所示。第一阶固有频率为172Hz,第一阶振型为控制器沿两个安装耳中心点连线的前后振动;第二阶固有频率为262Hz,第二阶振型为控制器壳体上下面的相向的凸凹振动;第三阶固有频率为293Hz,第三阶振型为控制器壳体上下面的相对的凸凹振动。



4 模态实验过程及结果

4.1模态试验过程

利用美国PCB公司的压电式力锤和压电式加速度计进行激励、拾振。然后用LMS TEST.LAB 试验采集分析系统进行数据采集和分析。试验设置为,采样频率为2048Hz,采样带宽为1024Hz,频率分辨率为0.125Hz,激励用力窗,响应是指数窗。

控制器通过两个安装孔固定在基频大于500Hz试验台上。采用了5传感器布置方案(图12)进行模型试验。参照仿真分析结果发现,该传感器布置方案漏掉了第一阶扭转模态。而采用8传感器的布置方案

6 结论

本文利用有限元软件对某型汽车电子控制器进行了模态仿真分析,并用模态实验验证了模态仿真分析结果的可信度,得到以下结论:

1、高质量的网格是仿真分析顺利进行的保障,并且能缩短仿真分析周期,要得到高质量的网格需去掉较小的倒圆角和圆孔,隐藏过密的曲线和硬点,切分不规则的几何体,忽略微小的电器件等;

2、对该类控制器进行了模态仿真分析时,不要使用一阶四面体单元,否则会导致模态频率偏大,可以使用一阶六面体单元(对其进行沙漏控制)和二阶四面体单元。

3、对该类控制器进行了模态仿真分析时,较大的电容、电阻、芯片及接插件等电器件不能直接面对面粘贴到PCB上,否则会增大PCBA的局部刚性,可以把较大的电容、电阻、芯片及接插件等电器件的针脚位置的单元粘贴到PCB上。

按照文中的仿真建模方法既能提高计算效率又能保障计算结果有93%以上的可信度。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭