新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 变压器绕制工艺解密

变压器绕制工艺解密

作者:时间:2011-09-12来源:网络收藏

许多的工程师对工艺把握不准,导致做出来的产品,反复的调试才能符合初始的设计参数要求,的工艺设计涉及到的东西很多,下面我就这个问题向达家介绍一下各种工艺对电源各项参数的影响,希望能对大家有锁帮助。

要想把设计好,首先就需要选择好变压器,变压器的选择受到很多的因素制约,首先,需要计算好变压器的Ap值,得到Ap值之后,我们就要根据电源的结构尺寸来初步选择变压器,包括变压器的高度,宽度以及长度。当电源的整体高度有限制时,就需要考虑扁平型的变压器,卧式变压器是首选。常见的有EE系列,EC系列,ER系列的卧式变压器,EF系列与EFD系列变压器;如果是超薄的适配器与LED日光灯内置电源,可以考虑平面变压器。而如果PCB的空间有限,应该选择PQ,RM,或者罐形磁芯,因为这些磁芯的截面积大,占用空间小,可以输出更大的功率
其次,在选择变压器的时候我们要根据电路的参数与侧重点不同,而选择不同的变压器。

比如,在反激电源中,我们希望漏感越小越好,因为漏感大小会影响功率器件的电压与电流应力,同时对EMC也有不可忽视的影响,那么我们就找对漏感控制有利的变压器,如PQ型,RM型,以及ERL型的变压器,再加上合理的绕法,可以将漏感控制在3%以下。又如LLC电源,我们希望用变压器的漏感来作为谐振电感,所以我们需要刻意加大漏感,选用分槽的骨架来比较理想。

再次,在选择变压器的时候,要考虑到成本与通用性。成本不仅仅是每个企业老板关心的问题,同样是我们广大研发工程师最纠结的问题,除非是少数军品级别或高档不计成本的电源,我们在设计的时候要在性能参数与成本之间找到一个平衡点,不要刻意去追求某个参数而忽略带来的成本影响,有时哪怕每个变压器增加几分钱的成本,如果批量起来,都是不可忽略的一笔开支。

除非由于商业因素的考虑,希望自己的产品不被其它的厂商所抄袭,一般不考虑私模或偏门的变压器磁芯与骨架,因为量产的时候,供货的渠道与周期都会受到很大的制约,而通用的磁芯,无论在价格上还是在供货渠道与周期都有很大的可选择性。看以下图片:

选择变压器的时候,还要考虑到为了符合安规标准,EMC性能。首先,要考虑变压器骨架的绕线宽度,变压器为了符合安规中的爬电就离要求,一般都要在绕组边上加3mm的挡墙,那么这就缩小了变压器骨架的可用绕线宽度;而如果不加挡墙的话,就需要使用三重绝缘线,而三重绝缘线的外径一般比内部的铜线直径大0.2mm,那么,同样的窗口面积,绕线的匝数相当于减少了。

其次,要考虑变压器骨架的槽深,有时为了EMC,需要在变压器内部加入屏蔽层,有些用细线绕,有的用铜箔绕,这些绕组无疑会增加绕组的层数,也就是说可用于绕制变压器其他绕组的槽深就减少了。

择变压器要考虑到绕组装配工艺的影响

很多的工程师在设计变压器的时候,没有考虑到装配工艺,往往会出现这样的情况:变压器计算好之后,把参数发给变压器厂做样;然后,变压器厂工程师打电话说绕不下,磁芯太紧,不好装配,不利于量产;最后不得不修改变压器参数;这样无疑会延缓项目的进度。所以在设计之初,我们就要考虑到变压器磁芯窗口的误差,以及绕线工艺、绝缘TAPE的厚度等因素,这些因素都会影响变压器的装配;我们在计算时应该对这些因素给予充分考虑,留有一定的余量。

变压器的绕制方法与注意事项

普通分层绕法:

一般的单输出电源,变压器分为3个绕组,初级绕组Np,次级绕组Ns,辅助电源绕组Nb;当实用普通分层绕法时,绕制的顺序是:Np--Ns--Nb,当然也有的是采用Nb--Ns--Np的绕法,但不常用。

此种绕法工艺简单,易于控制磁芯的各种参数,一致性较好,绕线成本低,适用于大批量的生产,但漏感稍大,故适用于对漏感不敏感的小功率场合,一般功率小于10W的电源中普遍实用这种绕法

三明治绕法

三明治绕法久负盛名,几乎每个做电源的人都知道这种绕法,但真正对三明治绕法做过深入研究的人,应该不多。相信很多人都吃过三明治,就是两层面包中间夹一层奶油。顾名思义,三明治绕法就是两层夹一层的绕法。由于被夹在中间的绕组不同,三明治又分为两种绕法:初级夹次级,次级夹初级。先来看第一种,初级夹次级的绕法(也叫初级平均绕法)

如上图,顺序为Np/2,Ns,Np/2,Nb,此种绕法有量大优点,由于增加了初次级的有效耦合面积,可以极大的减少变压器的漏感,而减少漏感带来的好处是显而易见的:漏感引起的电压尖峰会降低,这就使MOSFET的电压应力降低,同时,由MOSFET与散热片引起的共模干扰电流也可以降低,从而改善EMI;由于在初级中间加入了一个次级绕组,所以减少了变压器初级的层间分布电容,而层间电容的减少,就会使电路中的寄生振荡减少,同样可以降低MOSFET与次级整流管的电压电流应力,改善EMI。

第二种,次级夹初级的绕法(也叫次级平均绕法)

如上图,顺序为Ns/2,Np,Ns/2,Nb。当输出是低压大电流时,一般采用此种绕法,其优点有二:

1、可以有效降低铜损引起的温升:由于输出是低压大电流,故铜损对导线的长度较为敏感,绕在内侧的Ns/2可以有效较少绕线长度,从而降低此Ns/2绕组的铜损及发热。外层的Ns/2虽说绕线相对较长,但是基本上是在变压器的外层,散热良好故温度也不会太高。

2、可以减少初级耦合至变压器磁芯高频干扰。由于初级远离磁芯,次级电压低,故引起的高频干扰小。

我们大家来进一步深入讨论下这个三明治绕发对EMI的影响。首先,我们来看初级夹次级的绕法,我们知道,变压器的初级由于电压较高,所以绕组较多,一般要超过2层,有时甚至达到4-5层,这就给变压器带来一个分布参数---层间电容,形成原理相信大家都清楚,我就不多解释了。当MOSFET关断的时候,变压器的漏感与MOSFET的结电容以及变压器的层间电容会产生振动,幅度达到几十甚至超过一百V,这对MOSFET与EMI来说都是不允许的,所以,我们增加RCD吸收来抑制这个振荡,达到保护MOSFET与改善EMI的目的。

上图即为反激电源MOSFET的Vds波形

从这个角度来说,三明治绕法是可以在一定程度上改善EMI。从另外一个角度来说,三明治绕法确实是增加了初次级的耦合面积,减少了漏感,同时又使初次级的耦合电容增加了;当开关管反复开关时,电容也会反复充放电,也就是说会引起振荡,此振荡正比于开关频率,会对EMI产生不利的影响。



评论


相关推荐

技术专区

关闭