新闻中心

EEPW首页 > 光电显示 > 设计应用 > LED应用问题及解决方法

LED应用问题及解决方法

作者:时间:2011-11-28来源:网络收藏

  在目前的实际应用中,大功率LED存在的问题主要表现在以下几个方面:

  1.对保证LED工作条件和对电源技术性的认知程度不足,造成产品在电源上的故障层出不穷。

  2.对当今实用性道路的应用概念不清,盲目的与大功率气体放电灯“媲美”不计成本的制作超大功率,造成不切合实际的价格昂贵的路灯产品难以推广。

  3.对道路照明要求感悟不足,科学性点光源光学配光难点及对色温在道路照明中的重要性忽略,易造成眩光,斑马效应和在空气污染严重,下雨有雾天气的环境中,造成灯亮地面不够亮的现象。

  4.对道路照明要求模糊,实际使用维护的欠考虑,造成直接使用业主的抵制。

  5.由于对工作条件的要求不甚了解造成光衰减严重甚至于死灯。

  对的工作环境这个问题的讨论,需具备了解LED的基本常识;发光二极管其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,其现今大功率LED发光效率约为30%,70%将是热能,需要将其散热处理。大功率白光LED的结温TJ在亮度衰减70%时与寿命的关系可看出:TJ=50℃时,寿命为90000小时,TJ=80℃时,寿命降到34000小时,TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。

  对散热材料的热平衡速度要求重视度,造成光源的热得不到有效的处理引起光衰减严重。现在许多生产厂家大功率LED的热沉散热壳体应用基本采用不同的合金铝材料,其导热系数不一,一些材料的散热速率难以满足LED工作条件。不可忽略的铝基板及导热硅胶,硅脂材料的导热环节,使用材料的实际寿命质量,将直接影响LED的工作散热条件。如何减少中间环节,直接与热沉散热近距离接触将热量快速达到平衡的有效散热,是现今高质量的LED灯具产品开发需考虑的方向。

  先从材料分析:

  金属的热传导系数表——

  银 429铜 401金 317铝 237铁 80锡 67铅 34.8

  银热传导系数比较好,但缺点就是价格太高,纯铜散热效果则次之,但已经算是非常优秀的了。不过铜也有缺点:造价高、重量重、不耐腐蚀等。所以现在大多数散热片都是采用轻盈坚固的铝材料制作的,其中铝合金的热传导能力最好,好的风冷散热器一般采用铝合金制作。至于铜,目前市场上也出现了纯铜的散热器,铜的导热性能比起铝要快的多,但铜的散热没有铝快,铜可以快速的把热量带走,但无法在短时间内把本身的热量散去,另外铜的可氧化性是铜本身最大的弊病。当铜一旦出现氧化状态,从导热和散热方面都会大大的下降。

  从对比上看,最好的散热材料也并不是铝材。铜和铝的对比中形成了一种新型的工艺——铜铝结合。所谓的铜铝结合就是把铜和铝用一定的工艺完美的结合到一块,让铜快速的把热量传给铝,再由大面积的铝把热量散去,这不但增充了铝的导热不及铜,还弥补了铜的散热不如铝,有机的结合从而达到急速传热快速散热的效果。

  多篇文章中都阐述了散热是靠面积而不是看体积的大小,许多企业都了解了个中道理,壳体采用多层翅片散热,但对热沉散热壳体的翅片忽略了防尘和积尘,日积月累将会影响壳体的散热效果。应从在自然条件下规避积尘的最小化,不同方向的风和雨的自然冲刷可易性和清除灰尘的粘敷性。保证热沉壳体的散热效果不受恶劣环境的影响,散热通道的畅通,做到真正的长寿命。

  在增加散热面保证散热效果的基础上,解决了不同方向的风和雨的自然冲刷可易性和清除灰尘的粘敷性的问题,保证了热沉壳体的散热效果不受恶劣环境的影响。

  以现在的金属加工技术来看,机械加工是不可能做出理想化的绝对的平整表面,即便是镜面,也有很多细小的坑凹,只是肉眼不太容易发现,除了表面上存在坑凹外,还会有很多细小杂质,如灰尘什么的。当散热器表面和芯片表面接触时,存在的很多沟壑或空隙中都是空气。空气的导热能力很差,因此必须用其它物质来降低热阻,否则散热器的性能会大打折扣,甚至无法发挥作用。

  作为解决办法,导热介质就应运而生了,它的作用就是填充两个接触表面之间大大小小的空隙,增大发热源与散热片的接触面积。导热硅脂是我们最常见的导热介质。

  导热硅脂是用来填充铝基板与散热片之间的空隙的材料的一种,这种材料又称之为热界面材料。其作用是用来向散热片传导铝基板散发出来的热量,使铝基板温度保持在一个可以稳定工作的水平,防止铝基板因为散热不良而损毁,并延长使用寿命。

  作为一种化学物质,导热硅脂有着一些反映自身特性的相关性能参数。了解这些参数的含义,大致上可以判断一款导热硅脂产品的性能高低。

  导热系数(Thermal CONductivity),导热系数的单位为W/m?K(或W/m?℃),表示截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(K=℃+273.15)时的热传导功率。数值越大,表明该材料的热传递速度越快,导热性能越好。

  目前主流导热硅脂的导热系数均大于1W/m?K,优秀的可达到6W/m?K以上,是空气的200倍以上。但是和铜铝这些金属材料相比,导热硅脂的导热系数只有它们的1/100左右,换而言之,在整个散热系统中,硅脂层其实是散热瓶颈之所在。对于一个散热系统而言,不仅是散热器的事,导热介质也是很重要的组成部分:

  散热系统的总热阻 = 散热器热阻 + 导热介质热阻

  导热硅脂作为我们最常用的导热介质,其重要性不言而喻了,要降低其热阻,一方面取决于产品本身的性能, 另一方面取决于对产品的使用。因此我们要尽量选用那些导热性能好热阻低的导热硅脂,并在使用上多加注意,在保证硅脂完全填充热源和散热器表面空隙前提下,涂抹方式硅脂层尽可能地薄。

  值得大家注意的是普通导热硅脂在高温环境中使用一段时间后会出现“干化”或“硬化”现象,将会大大影响散热效果。因此在铝基板与热沉之间的导热环节需重视。

  有关人士正研究在热沉材料上进行特殊的陶瓷化处理直接安装线路,经过这样的优化后将会根本解决散热的导热环节。

  从国内现有参与制作的企业厂家来看,大部分是没有制作过路灯,对路灯制作的技术具体要求较模糊,互相参照模仿,以常规传统“蛇头”形状制作具多。当今LED路灯矩形状的重量与风阻影响着路灯的改造安装,在光学配光和维护要求上与其常规气体放电灯灯具相比难度较大,特别是直接的使用方业主反应强烈,给应用推广带来了困难。

  我从国家电光源检测中心得到的相关信息,在诸多厂家送检产品中就在IP防护这一项目上,绝大多数存在问题,而且意识不到问题的所在,认为我们的产品在水里都浸泡过也没有问题,怎么到检测中心就出问题?相信也有些产品在使用一段时间暴露出光源腔体存有水气。我看到许多厂家在检测中心排队送检的产品,感到心痛,很多弯路是可以避免的。在灯体密封结构上,在密封圈的材料选用上,飞利浦的灯具在这方面就做了专门的研究。

  在路灯造型结构设计上,不要跟着传统


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭