新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 利用热电偶和ADC实现高精度温度测量

利用热电偶和ADC实现高精度温度测量

作者:时间:2012-03-22来源:网络收藏
广泛用于各种温度检测。设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270°C至+1750°C宽范围内达到±0.1°C的精度。为充分发挥新型能力,需要高分辨率热电偶系统。能够分辨极小电压的低噪声、24位、Σ-Δ模/数转换器()非常适合这项任务。数据采集系统(DAS)采用24位评估(EV)板,热电偶能够在很宽的温度范围内实现。热电偶、铂电阻温度检测器(PRTD)和相结合,可构成高性能系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。

热电偶入门

托马斯•塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任何电压或电流激励。

利用热电偶和ADC实现高精度温度测量
图1. 热电偶简化电路

VOUT温差(TJUNC- TCOLD)是金属1及金属2的金属类型的函数。该函数在美国国家标准与技术研究院(NIST) ITS-90热电偶数据库[1]中严格定义,覆盖了绝大多数实用金属1和金属2组合。利用该数据库,可根据VOUT测量值计算相对温度TJUNC。然而,由于热电偶以差分方式测量TJUNC,为了确定温度结的实测温度,就必须知道冷端绝对温度(单位为°C、°F或K)。所有现代热电偶系统都利用另一绝对温度传感器(PRTD、硅传感器等)精密测量冷端温度,并进行数学补偿。

图1所示热电偶简化电路的温度公式为:
Tabs = TJUNC+ TCOLD(式1)
式中:
Tabs为温度结的绝对温度;
TJUNC为温度结与基准冷端的相对温度;
TCOLD为冷端参考端的绝对温度。

热电偶的类型各种各样,但是针对具体的工业或医疗环境可以选择最适合的异金属对儿。这些金属和/或合金组合被NIST及国际电工委员会标准化,简写为E、J、T、K、N、B、S、R等。NIST和IEC为常见的热电偶类型提供了热电偶参考表[1]。

NIST和IEC还为每种热电偶类型开发了标准数学模型。这些幂级数模型采用独特的系数组合,每种热电偶类型及不同温度范围的系数都不同[1]。

表1所示为部分常见热电偶类型(J、K、E和S)的例子。

表1. 常见的热电偶类型
Thermocouple TypePositive ConductorNegative ConductorTemperature Range (°C)Seebeck Coefficient at +20°C
JChromelConstantan0 to 76051µV/°C
KChromelAlumel-200 to +137041µV/°C
EChromelConstantan-100 to +100062µV/°C
SPlatinum (10% Rhodium)Rhodium0 to 17507µV/°C

J型热电偶具有相对较高的塞贝克系数、和低成本,应用广泛。这些热电偶使用相对简单的线性化算法,即可达到±0.1°C的测量精度。

K型热电偶覆盖的温度范围宽,在工业测量领域的应用非常广泛。这些热电偶具有适中的高塞贝克系数、低成本及良好的抗氧化性。K型热电偶的精度高达±0.1°C。

E型热电偶的应用没有其它类型热电偶普及。然而,这组热电偶的塞贝克系数最高。E型热电偶所需的测量分辨率低于其它类型。E型热电偶的测量精度可达到±0.5°C,需要的线性化计算方法相对复杂。

S型热电偶由铂和铑组成,这对组合能够在非常高的氧化环境下实现稳定、可复现的测量。S型热电偶的塞贝克系数较低,成本相对较高。S型热电偶的测量精度可达到±1°C,需要的线性化算法相对复杂。
应用示例

热电偶电路设计包括具有差分输入及能够分辨微小电压的高分辨率ADC、稳定的低漂移基准,以及准确测量冷端温度的方法。

图2所示为简化原理图。MX7705是一款16位、Σ-Δ ADC,内置可编程增益放大器(PGA),无需外部精密放大器,能够分辨来自热电偶的微伏级电压。冷端温度利用MAX6627远端二极管传感器以及位于热电偶连接器处、连接成二极管的晶体管测量。MX7705的输入共模范围扩展至低于地电势30mV,可实现有限的负温度范围[2]。

利用热电偶和ADC实现高精度温度测量
图2. 热电偶测量电路。MX7705测量热电偶输出,MAX6627和外部晶体管测量冷端温度,MAX6002为MX7705提供2.5V精密电压基准。

也有针对具体应用设计的IC,用于热电偶信号调理。这些IC集成本地温度传感器、精密放大器、ADC和电压基准。例如,MAX31855为冷端补偿热电偶至数字转换器,可数字化K、J、N、T或E型热电偶信号。MAX31855以14位(0.25°C)分辨率测量热电偶温度(图3)。

利用热电偶和ADC实现高精度温度测量
图3. 集成冷端温度补偿的ADC,转换热电偶电压时无需外部补偿。

误差分析

冷端补偿

热电偶为差分传感器,利用温度结和冷端之间的温差产生输出电压。根据式1,只有精密测得冷端绝对温度(TREF)时,才能得到温度结的绝对温度(Tabs)。

可利用新型铂RTD (PRTD)测量冷端绝对温度。它在很宽的温度范围内提供良好的性能,尺寸小、功耗低,成本非常合理。

图4所示为精密DAS的简化原理图,采用了MAX11200(24位、Σ-Δ ADC)评估(EV)板,可实现热电偶温度测量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)测量冷端绝对温度。该解决方案能够以±0.30°C或更测量冷端温度[3]。

利用热电偶和ADC实现高精度温度测量
图4. 热电偶DAS简化图

如图4所示,MAX11200的GPIO设置为控制精密多路复用器MAX4782,它选择热电偶或PRTD R1 - PT1000。该方法可利用单个ADC实现热电偶或PRTD的动态测量。提高了系统精度,降低校准要求。

非线性误差

热电偶为电压发生装置。但是,大多数常见热电偶[2,4]的输出电压作为温度的函数呈现非常高的非线性。

图4和图5中说明,如果没有经过适当补偿,常见的工业K型热电偶的非线性误差会超过数十摄氏度。

利用热电偶和ADC实现高精度温度测量
图5. K型热电偶的输出电压和温度关系图。曲线在-50°C至+350°C范围内线性度较好;在低于-50°C和高于+350°C时,相对于绝对线性度存在明显偏差。[1]

利用热电偶和ADC实现高精度温度测量
图6. 相对于直线逼近的偏差,假设线性输出为从-50°C至+350°C,平均灵敏度为k = 41µV/°C。[1]

IEC采用的NIST ITS-90等现代热电偶标准化处理、查找表和公式数据库[1],是当前系统间互换热电偶类型的基础。通过这些标准,热电偶很容易由相同或不同制造商的其它热电偶所替代,而且经过最少的系统设计更新或校准即可确保性能指标。

NIST ITS-90热电偶数据库提供了详细的查找表。通过使用标准化多项式系数[1],还可利用多项式在非常宽的温度范围内将热电偶电压换算成温度(°C)。

根据NIST ITS-90热电偶数据库,多项式系数为:

T = d0+ d1E + d2E² + ... dNEN(式2)

式中:
T为温度,单位为°C;
E为VOUT,热电偶输出,单位为mV;
dN为多项式系数,每一热电偶的系数是唯一的;
N = 多项式的最大阶数。

表2所示为一个K型热电偶的NIST (NBS)多项式系数。

表2. K型热电偶系数


上一页 1 2 3 下一页

评论


相关推荐

技术专区

Type-K Thermocouple Coefficients
Temperature Range (°C)-200 to 00 to 500500 to 1372
Voltage Range (mV)-5.891 to 00 to 20.64420.644 to 54.886