新闻中心

EEPW首页 > 设计应用 > 您真的能通过运算放大器实现1.0×10 -5 精度吗(续前)

您真的能通过运算放大器实现1.0×10 -5 精度吗(续前)

作者:Barry Harvey时间:2019-11-29来源:电子产品世界收藏

  Barry Harvey (ADI公司)

本文引用地址:http://www.eepw.com.cn/article/201911/407663.htm

  (接上期)

  7 ppm级精度的规格要求

  在实际电平转换、衰减/增益和电路中,需满足一些基本要求才能支持±5 V信号、适用于1 kΩ环境并实现表1所示的10 -6 线性度。

  现在,我们了解了在10 -6 精度领域的局限性,那么我们该如何改善它们?

  噪声:显然,首先要选择一款输入噪声电压不高于应用电阻组合噪声的。这样可以降低应用电路的总阻抗,从而降低噪声。当然,随着应用的阻抗下降,通过它们的信号电流会增加,并可能使负载诱发的失真加大。在任何情况下,都不必使运算放大器级别的输出噪声远低于其驱动级别的输入噪声。

  电流噪声会乘以应用阻抗,进而形成更多的电压噪声。在电流噪声很低的应用中,MOS输入非常吸引人,但它们的1/f电压噪声通常比双极性输入大。双极性输入的电流噪声为pA/√Hz级别,可能会产生较大的应用噪声,但1/f电流内容生成的应用电压噪声可能大于放大器的1/f电压噪声。一般而言,应用阻抗应小于放大器的V NOISE /I NOISE ,以避免I BIAS 为主的应用噪声。双极性放大器的V NOISE 越低,I NOISE 则越高。

  8 帮助运算放大器实现最佳性能:减少输入误差

1575278140685956.png

  除选择CMRR优良的运算放大器之外,设计人员还可以选择用运放搭建反相放大电路而不是同相放大电路。在反相电路中,输入会与地面或一些基准电压源相连,完全不会引发CMRR误差。不过,并不是所有应用电路都能反相,而且通常负电源无法用于负信号偏移。图8显示了非反相电路和反相电路中应用的双极点Sallen-Key滤波器。

微信截图_20191202171525.png

  如果两个输入端均包含应用电阻,则每个输入端的偏置电流乘以相应的电阻产生的电压误差会在输出端抵消,因此也可以抵消ICMR误差。例如,如果设置的放大器增益为10,附带900 Ω反馈和100 Ω接地电阻,则在正输入端安置串联的90 Ω(900Ω||100Ω)电阻即可抵消完全相等的输出偏置电流产生的电压误差。大多数双极性运算放大器的偏置电流搭配都很恰当,使得选择0.1%(而不是常见的1%)电阻即可实现最佳ICMR抑制。在图4中,补偿电阻与反相输入端-input串联放置。它们应能够被旁路通过。因为额外的输入电阻会导致噪声增加(电流噪声乘以连接的等效电阻)。

  反相增益让我们能够使用包含轨到轨输入的运算放大器,而不必让信号穿过切换点(假设我们已偏置电源和共模输入电平,以避免切换电压)。

  9 电源注意事项

  输出电流将会调节本地的供电电源。电源信号将通过PSRR传输到输入端。被影响的输入会生成输出信号,围绕其环路运行。在1 kHz频率下,1μF本地旁路电容的阻抗为159 Ω,远低于电源之间线路加上电源本身的阻抗。因此,本地旁路电容实际上在低于100 kHz的频率下没有效果。在1 kHz频率下,调控情况由远程电源控制。在1 kHz频率下,放大器可能达到90 dB电源抑制比。请注意,运算放大器电源端口的大部分电流包含了大量的信号谐波,所以我们希望从输出到供给电源的增益低于30 dB,以实现120 dBc的目标。要实现30 dB的增益,需要电源阻抗<30×负载阻抗。因此,500 Ω负载需要电源的阻抗小于17 Ω。这种情况可行,但是这样就不能在电源与运算放大器之间串联电阻和电感。在10 kHz频率下,要求则更加严格;PSRR将从90 dB降至70 dB,而电源阻抗则必须降至1.7 Ω。可行,但要求严苛。使用大型本地旁路可提供帮助。

  从布局角度来看,了解输出电流环路的路径非常重要,如图9所示。

  图9左侧的图表显示了驱动至负载的正电源电流,然后又通过地面回归负载。在整个接地路径中可能存在压降,以致于偶谐波电源电流的电压从信号源降至输出,从反馈分频器降至输出或输入地。不过,此地非彼地。图9右侧显示了一种传输电源电流的更好方式。电源电流从输入和反馈节点传出。

  在高于100 kHz的更高频率下,电源线路的磁辐射可能成为失真来源。电源的偶谐波电流可通过磁性方式耦合到反馈网络的输入,从而使失真随频率大幅增加。在这些频率之下,审慎的布局至关重要。有些放大器采用的是非标准引脚;它们的电源引脚远离输入,有些甚至会在输入侧提供额外的输出端口,以避免磁干扰。

1575278236956079.png

  10 减少负载为主的失真

  在高负载环境下,许多运算放大器的输出级都会成为主要的失真来源。您可以通过一些技巧来改善负载失真。其一,使用复合放大器,即一个放大器驱动输出,另一个放大器进行控制,如图10所示。

  此电路通过LTspice仿真设计实现。LTC6240和LT1395的spice模型文件中包含失真回放功能的宏模型。大多数宏模型都不会尝试显示失真情况,即使显示,仿真结果也可能不准确。该工具(LTspice)可查看宏模型的文本文件,确实如此,这些宏模型的失真模拟效果非常不错。

1575278267985986.png

  图10右侧是LTC6240,提供的增益为2,驱动电阻为100 Ω,对于该放大器而言负载较大。图10左侧是一款复合放大器,输入端另设一个LTC6240,并有一款良好的宽带电流反馈放大器(CFA)作为独立放大器来驱动相同的负载。复合放大器的理念是,输出运算放大器已具备适度的低失真,并且通过输入放大器在频率范围内的环路增益可进一步减少该失真。对于独立放大器和复合放大器,我们的闭环增益都为2,但在复合放大器中,可以对LT1395单独设置其自身的增益(通过R f1 和R g1 设置为4),以降低控制放大器的输出摆幅。由于输入引发的失真随输出振幅的平方增加,由此可进一步减少控制运算放大器的失真。

  图11显示了10 kHz、4 V p-p输出的频谱。

1575278323278062.png1575278324898589.png

  谐波失真的计算方式为:每个谐波电平(dB)减去基波电平(在10 kHz频率下)。如图底部所示,输入信号的失真约为–163 dBc,非常好,足以让人相信模拟效果。V(out2)来自于独立的LTC6240,失真为–78 dBc。也不错,但当然没有达到10 -6 级。

  图11顶部显示了复合放大器的失真,–135 dBc,相当出色。这么好的结果,我们能否相信?为了加以验证,中间部分显示了原理图上节点的失真。如果复合放大器输出端的失真接近于零,但输出放大器本身的失真确实有限,那么反馈过程会在其输入端(中间)为输出放大器失真设置负值。中间部分的失真为–92 dBc,这实际上与LT1395数据手册的曲线匹配!如果宏模型中体现出物理LTC6240输入CMRR或ICMR曲率,它们可能还会增加实际的电路失真。

  遗憾的是,很少有宏模型包含失真。您必须阅读宏模型.cir文件的标题来查看其是否受支持。要了解失真是否与数据手册的曲线匹配,需要进行一些模拟。

  复合放大器的补偿可能有点棘手,但在我们的示例中,第2个放大器的带宽比输入放大器高出10倍以上,只需少许C f 即可提供电路补偿。在此补偿架构中,如果控制放大器的总体增益中包括BW的带宽,那么输出放大器的带宽应>3×BW,而总体带宽应保守设置为约等于BW/3。

  为避免带宽损耗,可以使用增强放大器的方法。这样相比复合方案对失真的改善较小,但带宽及建立时间都会毫发无损。图12显示了测试原理图。

1575278410784180.png

  图12右侧显示了U2,即我们的独立LTC6240;左侧显示了两个LTC6240放大器。U1同独立放大器类似,控制输出,增益为2;U2的增益为3。U2在增强节点的输出电压大于U1的相应电压,所以U2会向输出端驱动输送电流。R BOOST 和U2的增益可以配置,以使U2向Rl驱动输送96%的负载电流,并使U1保持轻载,从而改善失真。我们需要确保U2包含足够的裕量,以承载额外的摆幅。

  LTC6240在kΩ范围内的负载失真主要为输入失真,但对于100 Ω负载则主要为输出级失真。

1575278451164960.png1575278451625403.png

  图13显示了频谱结果。

  同样,独立放大器在10 kHz频率下的失真为–78dBc。增强型放大器提供的失真为–106 dBc;不像复合放大器那么好,但比独立放大器几乎高出30 dBc。不过,增强型放大器的带宽只会降低少许。

  请注意,R BOOST 微调了一下;如果将其改为52±2 Ω,增强型失真则下降10 dBc,但随后发生的变化则较小,最高为±10 Ω。似乎U1有一些预期极性的适度负载。理想(无负载)或额外的增强电流会导致失真增加。

  最好是,U2与U1有相同的群组延迟,以使增强信号与输出同时出现。U2的增益比U1高50%,因而闭环带宽较少,这意味着增强输出会是频率范围内的主要输出延迟。通过跨接在U1输入端的电阻,可将U1的带宽降至与U2相同的水平。这样可使U1的噪声增益等于U2,从而实现相同的群组延迟。该模拟器在10 kHz频率下没有改善;U1提供最佳失真,无延迟均衡。您需要尝试一下,才能了解在更高的频率下是否也是这种情况。如果放大器为电流反馈类型,那么可以通过降低R f1 和R g1 使U2的带宽升至U1的水平。

  11 10 -6 级质量

  放大器推荐有些放大器的参数可能不符合10 -6 级失真的产品,最易于使用的更好的产品为AD8597、ADA4807、ADA4898、LT1468、LT1678和LT6018。

  ADI有些放大器需要解决其输入问题(同相放大应用可能存在问题),但仍能提供良好的失真,例如AD797、ADA4075、ADA4610、ADA4805、ADA4899和LTC6228。

  12 结论

  遗憾的是,商用型10 -6 精度放大器难以找到(如果可以找到)。市场上存在10 -6 线性放大器,但必须注意这些放大器的输入电流,它们可能会通过电路中的应用阻抗产生失真。这些阻抗可以降低,但在反馈中驱动它们会导致运算放大器输入端产生失真的风险。在特别低的输入电流和变动环境下使用运算放大器,可以通过调整电路中的应用阻抗以使运算放大器获得最佳失真,但这样会增加系统噪声。要达到10 -6 级线性度和噪声,需要认真挑选运算放大器并优化应用电路。(全文完)

  作者简介:

  Barry Harvey,硕士,拥有20多项专利,曾担任模拟IC设计人员,负责设计高速运算放大器、基准电压源、混合信号电路 、视频电路、DSL线路驱动器 、DAC 、采样保持放大器 、倍增器等。

  本文来源于科技期刊《电子产品世界》2019年第12期第24页,欢迎您写论文时引用,并注明出处。



评论


相关推荐

技术专区

关闭