新闻中心

EEPW首页 > 消费电子 > 设计应用 > 光耦助力提升电动汽车充电站的安全与效率

光耦助力提升电动汽车充电站的安全与效率

作者:时间:2018-08-09来源:网络收藏

近年来,全球交通运输领域的电动化得到了飞速发展。到2012年底,全球电动汽车(EV)数量达到约18万辆。据国际能源署(IEA)的《全球电动汽车展望》报告,这个数字在2014年底增长了3.7倍,达到66.5万多辆。该报告还预测,到2020年将约有2 000万辆电动汽车在道路上行使。

本文引用地址:http://www.eepw.com.cn/article/201808/386149.htm

随着电动汽车的快速增长,为延长车辆的行驶里程,人们对充电基础设施的需求也随之“水涨船高”。电动汽车充电站,也称为电动汽车供应设备(EVSE),为电动汽车供电,同时提供网络互连。在本篇文章当中,电动汽车(EV)包括充电式电动汽车或纯电动汽车(BEV)、电动公交车和插电式混合动力车辆(PHEV)。图1展示了一台工作中的电动汽车充电站。

图1 这是电动汽车在充电站充电的常见场景

IHS汽车部门预测;全球电动汽车充电站的安装量将从2014年的100万个激增到2020年的1360万个。据这个市场研究公司估计:届时美洲的安装量将达到430万个;欧洲、中东和非洲(EMEA)地区的安装量将达到 410万个;亚洲(包括日本)的安装量将达到530万个。

各国政府如德国、中国和美国都正在逐步将更多的资金用于开发充电基础设施。例如,中国计划到2020年建造450万个电动汽车充电站。据中国中央政府网站的报道,这将帮助实现到2020年将纯电动汽车和插电式混合动力车辆的累计生产量和销售量提高到500万台的目标。基于2014年年底建成31000个充电站的事实[注5],要实现建造450万个充电站的目标意味着复合年增长率(CAGR)需要达到129%。

充电站标准

在电动汽车充电基础设施带来广阔的市场机遇的同时,也带来了亟需解决的严峻挑战。其中一个挑战就是充电系统关键部件缺乏统一的标准,比如充电线、保护机制、额定功率、插头类型、耦合器配置和等。与交流慢速充电相比,这些问题在快速充电系统当中更为明显,这是因为快速充电系统通常安装在共享的公共或半公共的区域。显而易见,系统不兼容会让共享变得困难。

国际电工委员会(IEC)创立了一整套覆盖电动汽车充电的标准。例如,IEC 61851-1:2010 EV适用于以高达1000 V标准交流电和高达1500 V直流电给电动汽车充电的车载和非车载设备。IEC 61851-23:2014则规定了对直流电动汽车充电站的要求。此外,IEC 62196-3:2014规定了对电动汽车充电耦合器的特定要求。

在全球范围内,快速充电系统目前面临着相互竞争的标准——一个是日本工业界采用的CHAdeMO协议,另一个是美国和德国汽车制造商,采用的国际自动机工程师学会(SAE International)推出的J1772联合充电系统标准(CCS,又称“Combo”标准)。这些标准在额定功率、耦合器设计、及EVSE和EV之间的协议等方面的规格参数各不相同。

不过,也有人指出“没有标准之争”,这是因为他们的充电系统设计将全部功能集成在一起,同时符合CHAdeMO以及SAE标准。其中一个例子是ABB公司的Terra 53充电站。另一个相对较新的竞争性标准是中国近日审批通过的GB / T 20234——修订版。某些设计,如特斯拉的超级充电站,使用专门的充电技术。

交流还是直流充电?

暂且不论标准的复杂性,目前主要有两种方法将电力从车辆外部输送到车辆内部的电池:交流(ac)或直流(dc)。电网通过交流输电,而存储在车载电池中的则为直流电。因此,需要充电器来做转换工作。

根据充电器是安装在车辆内部还是外部,可分为车载充电器(OBC)和非车载充电站。车载充电器接受来自家里以及消费者工作场所的主电力供应源提供的交流电,并将其转换为直流电以供电池充电。通常情况下,交流充电速度缓慢,这是因为这种充电器允许的额定功率受到限制——这是因为可允许的重量、空间和成本所造成的。

直流充电法通常用于非车载充电站当中。它将直流电直接注入到车辆内部的电池。由于直流充电设备安装在固定位置,且没有大小的限制,它的额定功率可高达数百千瓦。

图2 直流快速充电法将充电时间从小时级缩短至分钟级

例如,SAE J1772标准将DC Level 2的规格提高到100 kW。CHAdeMO标准则将50千瓦看成是最佳的输出功率,同时考虑到了在充电站所在地获取最大功率的成本,以及电池的充电时间。特斯拉的超级充电站由多个并行工作的Model S充电器组成,可为电池输送高达120千瓦的直流电。这个充电速度相当于在约30分钟内充满行驶170英里路程所需的电力。直流快速充电法将充电的时间从小时级缩短至分钟级。图2展示了交流和直流两种充电方式。下表则列出了在交流和直流充电各自允许的最大充电功率和预估的充电时间,以供大家参考。

交流电(ac)和直流电(dc)充电器的充电速度各不相同,两者对于适应电动汽车驾驶员的不同生活方式都是至关重要的。例如,电动汽车驾驶员可以在时间充裕的时候,比如呆在家里或工作场所的时候,使用交流电充电。相比之下,直流快速充电可以大大减少充电时间,以便让电动汽车司机更快地继续他们的旅程。快速充电是成功推出能减少顾客里程焦虑(特别是长途驾驶)的电动汽车的一个关键因素。

充电站拓扑结构和安全隔离

电动汽车充电站的车载电子系统以及电动汽车充电站的所有功能都需要考虑到安全隔离的需求。车载系统包括高压电池管理系统、dc-dc转换器、电动机驱动逆变器及车载充电器。对于车载系统而言,光耦合器必须在隔离功能方面具有更好的可靠性和安全性,包括栅极驱动、电流/电压感应和数字等。这篇文章中的讨论将集中在适用于非车载充电站设计的隔离解决方案,通常工业级器件就已经足够了。

一般而言,一个电动汽车充电站通常包括的功能块有AC-DC整流器、功率因数校正(PFC)和DC-DC转换器,以将电压调节到适合于为车辆电池充电的水平。图3是一个直流充电站的功能模块设计简图。在高频隔离的拓扑结构当中,电气隔离功能通过高频变压器在dc-dc转换器中提供。此外,多个隔离设备提供各种信号隔离功能,同时在高电压电和低压控制器之间保持安全的隔离。在所有的这些部分,MOSFET和IGBT功率器件用于执行开关功能。

图3 充电控制中心进行计算和执行控制指令,以实现设计功能

位于系统中心的是在微控制单元(MCU),控制功率因素矫正(PFC)和带有脉宽调制(PWM)信号的dc-dc 转换器。充电控制系统根据电压、电流的信息和其他数据如温度和用户输入等,进行计算和执行控制指令,从而实现所设计的功能。数字通信端口用于EVSE和电动汽车充电控制中心之间的通信,之后接入云端,用于报告充电数据、远程监控和诊断等。

光耦合器提供电流隔离和高效充电功能

如图3所示,隔离式安全栅沿着多个光耦的耦合点形成的线上构建。这一点在确保设计符合安全监管标准方面很重要。除了电气隔离,在电源转换器中包括EV充电站中电源转换器中需要重点关注的另外一个重要因素是电力转换效率。本文介绍了如何使用目录[注17]中的几个光耦,以实施高效的充电站设计,并保证安全隔离。

栅极

在电动汽车充电站当中,MCU改变PWM信号,以打开或关闭MOSFET或IGBT,并调整每种状态的持续时间,以根据电池充电模式来调节输出电压/电流。从MCU 输出的PWM信号通常需要放大,以增加输出电流,并以希望的频率切换电子器件。这是通过采用名为“栅极”的器件来驱动MOSFET或IGBT栅极来实现的。

目前,一些栅极供应商提供一整套的产品组合,包括从基本的栅极驱动器到功能丰富的集成栅极驱动器,以满足高效驱动和保护功能的设计需求。比如,ACPL-W346栅极驱动器提供2.5 A输出电流、轨到轨的输出电压范围,以及极短的55-ns传播延迟时间。这些电气规格参数对于需要保证高电力转换效率的设计来说都是必不可少的。这部分封装在SSO-6小型表面贴装器件当中,按照UL1577标准,每分钟的额定绝缘电压为5000 VRMS;按照IEC / EN / DIN EN 60747-5-5标准可以达到1140 VPEAK。通过这些标准意味着控制器和用户的安全将得到保证。

在电动汽车充电站的设计当中,除了选择最佳的电源转换拓扑结构之外,选择先进的电力器件和合适的栅极驱动器可以帮助实现效率目标。碳化硅(SiC)的MOSFET迅速出现在商用电力设备市场上,和传统的基于硅材料的MOSFET和IGBT相比,它能够提供几个好处。其中一个好处是减少了开关损耗,因为高压 SiC MOSFET不会发生IGBT当中出现的拖尾电流损耗。此外,SiC MOSFET的电流密度高,晶元尺寸小,和硅MOSFET相比,电容更低。因此,可以实现较高的切换频率,从而提高系统的效率。

图4 通过Avago栅级驱动和Cree SiC MosfETs提升效率


上一页 1 2 下一页

关键词: 通信 驱动器

评论


相关推荐

技术专区

关闭