关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于CC2530的温室无线采集与控制系统设计与实现

基于CC2530的温室无线采集与控制系统设计与实现

作者:时间:2016-10-10来源:网络收藏

0 引言

本文引用地址:http://www.eepw.com.cn/article/201610/306644.htm

农业是国家发展的基础。中国是农业大国,却不是农业强国,大力发展农业是提高我国农业水平的重要途径。作为现代农业的重要组成部分,使农业生产可以不受气候、地域的限制,大大地提高了作物产出。目前,我国的智能化和信息化水平仍十分落后。采集和控制是现代温室的两个基本构成,目前温室的采集和控制大多采用线缆传输,当传感器和控制设备较多时,线路杂乱,施工难度大、成本高,维护升级困难,而且温室的高温度、高湿度、酸性环境极易造成线路腐蚀老化,影响系统的可靠性和安全性。针对这些问题,本文设计了基于的温室与控制系统,该系统不仅实现了温室多点数据的实时采集和无线上传,而且实现了设备控制的无线化和自动化,系统运行过程中几乎不需要人的参与,具有很高的应用价值。

1 系统总体设计

系统结构如图1所示。通过若干分布在温室中的传感器节点采集数据,无线发送至中心节点,中心节点汇集各采集节点的传感数据并上传到监控计算机,监控计算机进行数据处理、显示和存储,根据数据处理结果下达控制命令,并经由中心节点无线发送给控制设备,实现采集与控制的自动化和无线化。

基于CC2530的温室无线采集与控制系统设计与实现

2 硬件设计

2.1 主控芯片

系统采用无线SOC作为主芯片,它将微处理器和无线射频模块集成到一块芯片上,是TI公司推出的新一代解决方案。的微处理器核心为一款增强型8051单片机,配有8KB的SRAM内存和32/64/128/256KB容量可选的flash闪存,时钟频率达到32MHz,能满足不同应用对数据处理的要求,休眠时自动切换到32KHz低频模式,最大限度地降低能耗:无线射频模块的核心是CC2520芯片,工作在ISM免许可认证频段2.4GHz,采用DSSS扩频技术,具有出色的接收灵敏度(-98dm)和链路预算(103dB),最大传输速率 250Kbps,完全符合IEEE802.15.4协议标准。

2.2 传感器节点

本系统选用DHT11温室两用型数字传感器,该传感器为单总线数字信号输出,工作电压3.3~5.5V,温度测量范围0~50℃,精度±2℃,湿度测量范围20~90%RH,精度±5%RH。图2是DHT11的电路连接图。

基于CC2530的温室无线采集与控制系统设计与实现

DHT11通过一根数据线与CC2530模块相连接,构成采集模块,一次读取结束后,温度和湿度数据在数据线上按位传输、图3为传感器节点框架图。

基于CC2530的温室无线采集与控制系统设计与实现

2.3 控制节点

由于气候多变,温室经常由于恶劣天气等原因而不得不关闭窗户,此时室内空气不流通,受温室覆盖材料散热等原因影响,室内温度、湿度等重要的环境因子会分布不均,直接影响作物生长的均匀性,因此有必要采取室内循环通风措施,使室内气候均匀、稳定。

本系统的控制对象为温室内循环通风用的风机,风机型号CBF-400防爆型轴流风机,风量2880m3/h,功率0.37kW,试验温室面积为 10*8m2,采用两台这样的风机能很好地满足要求。该风机工作电压220V/AC,采用直流继电器驱动,为提高驱动能力和抗干扰能力,增加了功率放大器和光耦隔离器件。CC2530主控板通过一个I/O引脚控制直流继电器,从而控制风机启、停。图4为控制节点框架图。

基于CC2530的温室无线采集与控制系统设计与实现

3 软件设计

3. 1 节点程序设计

3.1.1 网络协议

目前常用的短距离无线通信协议有、Bluetooth、Wi—Fi、UWB等,其中以其低功耗、低速率、大网络容量、动态组网、高安全性等特点成为无线传感器网络的最佳选择。ZigBee定义了网络层和应用层规范,物理层和介质访问控制层(MAC)基于 IEEE802.15.4协议标准。

ZigBee网络有三种拓扑形式:星型、树型、网状,其结构如图5所示。星型网络和树型网络不能改变网络拓扑,适合于不需要移动的场合。网状网络中节点能自由地与周围的节点通信,网络拓扑可动态调整,能够满足高移动性的要求,而且网络扩展十分方便。本系统网络规模虽然不大,但为方便移动和后期扩展,采用网状网络拓扑结构。

基于CC2530的温室无线采集与控制系统设计与实现

3.1.2 程序结构

节点的程序基于TI公司的Z-Stack协议栈, 它引入了操作系统抽象层OSAL(Operating System Abstraction Layer)机制来处理多任务。OSAL按优先级从高到低的顺序轮询物理层、MAC层、网络层、应用层是否有任务要执行。若有高优先级任务,立即跳转进入该任务处理子程序,处理结束后再次从最高优先级开始新一轮查询;若查询结束 发现没有任务要执行,系统会转入休眠,以节约能量。图6是OSAL的任务处理流程图。

基于CC2530的温室无线采集与控制系统设计与实现

本系统采用的Z-Stack版本为ZStack-CC2530-2.3.0-1.4.0,在采集节点程序中添加了一个SEND_DATA_EVENT任务,用于执行传感器采集和数据发送功能;在中心节点程序中添加了一个SEND_CMD_EVENT任务,用于发送控制命令,控制节点中添加相应的命令接收与解析程序。

3.2 上位机软件设计

传感器采集到的数据上传到上位机,上位机进行处理、存储。图7为上位机软件显示效果图。该软件由VC++6.0编写完成,能够实时动态显示各采集节点的温湿度数据,并绘制出变化曲线。采集到的数据按设定的格式存储为.txt文本文档,保存到中心计算机的硬盘上,便于后续进行温室建模等深入研究。

基于CC2530的温室无线采集与控制系统设计与实现

4 系统测试

分别在外置电源和电池供电两种模式下测试系统。

在外置电源供电时,节点在1秒采样1次的较高采样频率下一直持续稳定运行;在两节AA电池供电时,节点每2min采样1次,其余时间进入休眠,系统能持续运行一周。考虑到温室一般对采样频率要求不高,可以将采样间隔设置为10分钟甚至更长。若采用大容量电池,续航能力可以延续至数月甚至几年,以适应某些无法提供外置电源的工作环境。图7为测试中的上位机数据显示界面,图8为存储到计算机的数据格式。

在持续两周的观察期内,轴流风机启、停控制准确率为100%,控制可靠性很高。实验表明该系统工作稳定、可靠,低功耗性能卓越,具有很高的实用性。

5 结论

本系统实现了温室环境的无线监测和设备的节点可以方便地布置在温室的不同位置,能够有效地获取整个温室的环境信息。与传统的温室有线测量与控制系统相比,简化了布线任务,节省了人力成本。整个系统的成本较传统有线系统更低,并且维护和升级都非常方便,为未来温室的智能化、无线化提供了一种解决方案。



评论


相关推荐

技术专区

关闭