新闻中心

EEPW首页 > EDA/PCB > 设计应用 > FPGA技术高频疲劳试验机控制器

FPGA技术高频疲劳试验机控制器

作者:时间:2012-08-24来源:网络收藏

简介

本文引用地址:http://www.eepw.com.cn/article/190007.htm

现场可编程门阵列(FieldProgrammable Gate Array)是美国Xilinx公司于1984年首先开发的一种通用型用户可编程器件。既具有门阵列器件的高集成度和通用性,又有可编程逻辑器件用户可编程的灵活性。

FPGA由可编程逻辑单元阵列、布线资源和可编程的I/O单元阵列构成,一个FPGA包含丰富的逻辑门、寄存器和I/O资源。一片FPGA芯片就可以实现数百片甚至更多个标准数字集成电路所实现的系统。

FPGA的结构灵活,其逻辑单元、可编程内部连线和I/O单元都可以由用户编程,可以实现任何逻辑功能,满足各种设计需求。其速度快,功耗低,通用性强,特别适用于复杂系统的设计。使用FPGA还可以实现动态配置、在线系统重构(可以在系统运行的不同时刻,按需要改变电路的功能,使系统具备多种空间相关或时间相关的任务)及硬件软化、软件硬化等功能。

鉴于疲劳控制规模比较大,功能复杂,故我们在研制过程中,在传统的基础上,通过FPGA技术及微机技术两者的结合,来全面提升系统的性能,使整机的工作效率、控制精度和电气系统可靠性得到了提高,且操作方便而又不乏技术的先进性。

2 控制器结构及内容

本控制系统的总体结构,下位机是整个疲劳控制器的核心。用于实现产生控制试验机的控制信号和数据,反馈信号的处理,以及和上位机进行数据通信。其控制功能强弱也直接影响着整个控制器性能的好坏。图中波形发生器是用于激励和保持电磁激振器的振动。在此,波形发生器应输出正弦波。

3 系统采取的技术路线

系统在实现技术参数、功能要求的基础上,结合目前微机及FPGA等微电子技术,采取了以下主要技术路线:

(1)下位机是系统控制的核心。由于本系统控制规模相对比较复杂,控制对象具一定特殊性(如率,高负荷等),且牵涉到控制电机,故不采用传统的8位机,而是考虑采用功能相对更强大,速度更快的16位机—87C196系列。

(2)激振器要求输入波形为正弦波,试验的频率范围为80~250Hz。另外,系统还应该能够进行扫频试验。在扫频试验中,系统以1Hz为步长进行扫频(粗调),再在粗调的基础上进行微调(以0.1Hz为步长),以确定系统的共振点。可以看出,能产生精度为0.1Hz波形的电路模块是整个系统设计中很关键的一部分,也是设计难点之一。这部分如通过单片机或其它专用芯片则不能或很难实现。系统采用FPGA作波形发生器,见图1中虚线框所示部分。这样做的优点是:高速(一般芯片频率至少几十兆,甚至上百兆)且能满足上述精度要求;采用数字电路实现,抗干扰性好;能把其它逻辑电路也集成至该芯片中,省掉了许多分立元件,同时也减少了体积;能够按需改变波形。

(3)直流调速通过变压实现,而变压则通过采用晶闸管的可控整流器来完成。通过单片机输出可变电压给移相触发器,触发器输出可控导通角给可控整流器,实现电机速度的调整。有利于提高系统的可靠性。

(4)系统部分重要信号用数字滤波器滤波,该数字滤波器用FPGA实现。与软件滤波相比,此方法有利于改善信号的滤波效果,且滤波速度得到很大提高。

4 部分模块设计

FPGA部分可划分成两个模块,其中正弦波发生器模块又可细分成几个小模块,如图2所示。

4.1 锁存器设计

锁存器用来将单片机送来的频率数据锁存稳定在FPGA中,可以用片内的锁存器资源(或用触发器)来构成。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭