新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 一种基于真随机数发生器的扩展频谱CMOS振荡器的设

一种基于真随机数发生器的扩展频谱CMOS振荡器的设

作者:时间:2009-06-24来源:网络收藏
在现代开关电源的控制电路中,对模拟电路和信号处理起着很重要的作用。在多数情况下,其工作频率被设计为某一固定频率或是基于一定负载的恒定值,在该工作频率下存在大量的噪声信号。如果的频率在某一频率范围内随机变化,噪声信号就会分散在一定的频率范围,从而可以减小由谐振引起的噪声,并有利于在频谱范围内,最大限度地减小开关电源的输出信号噪声峰值。本文提出了一种新型真的结构,利用真产生的随机序列控制中恒流源的充电电流的大小,设计了一种振荡器,可以用于改善DC/DC转换器的噪声性能。

1 振荡器的结构

本文引用地址:http://www.eepw.com.cn/article/188878.htm

整个电路的基本结构如图1所示,它由随机序列发生器、振荡器电路、整形电路及二分频电路四部分组成。在外部使能信号和反馈时钟的控制下,随机序列发生器产生随机信号,与整形电路的反馈信号一起控制振荡器工作,这样振荡器中对电容充电电流的大小在一定范围内是随机跳变的,因此振荡器产生了随机振荡信号。在振荡器中,通过改变电容的充电电流的大小,从而调节随机振荡器的振荡信号的周期。振荡器产生的振荡信号经过二分频电路整形后产生的时钟频率在某一频率范围内随机变化。

2 真电路

2.1 设计思路

在以往的文献[5-9]中,真随机数发生器的许多设计方法已经产生。本电路设计的思路是利用D触发器“振荡采样法”,核心部分是一个下降沿触发的D触发器,用于对两个相对独立的方波进行数字混合,即将一个高频方波送触发器时钟端,另一个低频方波送入数据输入端。但文献[10]提出了一种振荡采样法的结构需要两个振荡器,电路复杂,不能满足振荡器的需要。

2.2 电路设计

通过对文献[10]振荡采样法的结构进行改进,本文设计了一种仅需要一个振荡器的随机序列发生器。

当使能信号EN为高电平时,整体电路如图2所示。在此电路中共有17级D触发器,第一个D触发器实现对两个独立的方波进行数字混合,后面16个D触发器构成一个16位的移位寄存器。为了补偿输出分布的不均匀,在采样时钟的节拍下,每次将第一个D触发器采样得到的单个随机位逐次移位,然后将移位寄存器的第二个D触发器的输出与最后的D触发器的输出异或,此信号b12又被送入到第一个D触发器的数据输人端。电路的输出信号为移位寄存器的后四位,即为:c5,c6,c7,a10。

在电路设计中,利用了异或电路把相隔14个时钟的输出值b7和a10相异或,这样得到b12的预知输出值的概率很小。其原理是根据高斯分布的特征之一,随机变量(周期)的变化会引起标准变差的相同变化。如果我们考虑相隔14个周期的采样值,而不是连续采样值,这样第14个时钟边缘相对于第一个时钟边缘的标准是原来的14倍。于是相隔多个周期的采样值就会具有较小的相关性,预知输出值的概率就很小。这样,b7和a10相异或得到的b12信号是一预知概率很小的随机信号,所以送入到第一个D触发器的数据输入端的信号为随机信号。

综上所述,在某范围内随机采样时钟的节拍下,第一个D触发器对输入随机数据b12进行采样得到随机信号。为了得到分布均匀的输出信号,将采样所得到的随机信号利用移位寄存器逐次移位,从而得到了分布均匀的四路随机输出信号c5,c6,c7,a10。

3 振荡器电路设计

随机振荡器电路的工作原理图如图3所示。M1~M5,M7,M8,R1构成了单位增益缓冲器,使,决定了振荡器的充电电流基I1(I1=Vo/R1),在设计时可以调节R1的大小实现对充电电流基I1的调整。M10~M18构成了电压比较器,利用M18,M19电流镜产生单端输出Vout。由M25产生镜像电流I2,对时间常数电容C充电。随机电流充电电路由随机控制信号(V1~V4)随机打开M27~M30管,由于镜像的作用,电容C充电电流变大,加快电容C充电速度,即改变了振荡器的频率。在电路中M21~M24各管的宽长比比值设计为8:4:2:1,使振荡器的振荡频率可以完全覆盖某一频率范围,从而保证该振荡器在某一频率范围内连续随机变化。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭