新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 模拟与数字布局(2)

模拟与数字布局(2)

作者:时间:2012-04-05来源:网络收藏

二、领域布线要领的不同之处

本文引用地址:http://www.eepw.com.cn/article/186675.htm

1、地平面可能是个难题

电路板布线的基本知识既适用于电路,也适用于电路。一个基本的经验准则是使用不间断的地平面,这一基本准则可降低了电路中的dI/dt(电流随时间的变化)效应,因为dI/dt效应会造成地的电势并使噪声进入电路。

数字和电路的布线技巧基本相同,但有一点除外。对于电路,还要另外一点需要注意,就是要将数字信号线和地平面中的回路尽量远离模拟电路。这一点可以通过如下做法来实现:将模拟地平面单独连接到系统地连接端,或者将模拟电路放置在电路板的最远端,也就是线路的末端。这样做是为了保持信号路径所受到的外部干扰最小。对于数字电路就不需要这样做,数字电路可容忍地平面上的大量噪声,而不会出现问题。

2、元件的位置

如上所述,在每个PCB设计中,电路的噪声部分和“安静”部分(非噪声部分)要分隔开。一般来说,数字电路“可含”噪声,而且对噪声不敏感(因为数字电路有较大的电压噪声容限);相反,模拟电路的电压噪声容限就小得多。两者之中,模拟电路对开关噪声最为敏感。在混合信号系统的布线中,这两种电路要分隔开,如图4所示,其4(a)将电路的数字和模拟部分分隔开, 数字电路应靠近接扦件和电源位置;其4(b)尽可能将高频和低频分开,其高频元件应放置在接扦件和电源附近。

1.JPG

3、PCB设计产生的寄生电容和寄生电感

PCB设计中可能会产生的问题是, 寄生电容和寄生电感很容易形成。

寄生电容的产生与减少

设计电路板时,放置两条彼此靠近的走线就会产生寄生电容,这是用了以下走线方法所产生的,见图5所示。即在不同的两层,将一条走线放置在另一条走线的上方;或者在同一层,将一条走线放置在另一条走线的旁边。

2.jpg

在这两种走线配置中,一条走线上电压随时间的变化(dV/dt)可能在另一条走线上产生电流。如果另一条走线是高阻抗的,电场产生的电流将转化为电压。

快速电压瞬变最常发生在模拟信号设计的数字侧。如果发生快速电压瞬变的走线靠近高阻抗模拟走线,这种误差将严重影响模拟电路的精度。在这种环境中,模拟电路有两个不利的方面:其噪声容限比数字电路低得多;高阻抗走线比较常见。那采用何种技术可以减少这种现象呢?

采用下述两种技术之一可以减少这种现象。最常用的技术是根据如下的电容公式,

3.jpg

改变走线之间的尺寸。要改变的最有效尺寸是两条走线之间的距离。应该注意,变量“d”在电容方程的分母中,“d”增加,容抗会降低。可改变的另一个变量是两条走线的长度。在这种情况下,长度“L”减小,两条走线之间的容抗也会降低。

另一种技术是在这两条走线之间布地线。地线是低阻抗的,而且添加这样的另外一条走线将削弱产生干扰的电场,如图5所示。

寄生电感产生与降低

电路板中寄生电感产生的原理与寄生电容形成的原理类似。也是布两条走线,在不同的两层,将一条走线放置在另一条走线的上方;或者在同一层,将一条走线放置在另一条的旁边,如图6所示。在这两种走线配置中,一条走线上电流随时间的变化(dI/dt),由于这条走线的感抗,会在同一条走线上产生电压,并由于互感的存在,会在另一条走线上产生成比例的电流。如果在第一条走线上的电压变化足够大,干扰可能会降低数字电路的电压容限而产生误差。并不只是在数字电路中才会发生这种现象,但这种现象在数字电路中比较常见,因为数字电路中存在较大的瞬时开关电流。

4.jpg

为消除电磁干扰源的潜在噪声,最好将“安静”的模拟线路和噪声I/O端口分开。要设法实现低阻抗的电源和地网络,应尽量减小数字电路导线的感抗,尽量降低模拟电路的电容耦合。



关键词: 模拟 布局 数字

评论


相关推荐

技术专区

关闭