新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于rockwell自动化PLC的风力发电通讯系统

基于rockwell自动化PLC的风力发电通讯系统

作者:时间:2010-11-04来源:网络收藏

  1引言

本文引用地址:http://www.eepw.com.cn/article/180299.htm

  技术发展很快,装机容量不断增大,在世界各地都受到了广泛重视。在目前的变速恒频风电系统中,使用双馈感应机(DFIG)的双馈型风电系统市场份额最大,使用永磁同步机(PMSG)的直驱型系统发展很快[1-2]。不管是双馈型还是直驱型风电系统,其整体控制都比较复杂,需要有主控系统来协调变桨、偏航、变流器、测量、保护和监控等多项环节,且风电系统通常运行环境比较恶劣,各执行机构之间可能存在一定的距离,因此通讯问题至关重要 [3-4]。

  可编程序控制器(Programmable Logic Controller,),是一种专为工业环境应用而设计的电子系统,采用可编程序的存储器,在内部存储执行逻辑运算、顺序控制、定时、计数和算术运算操作的指令,并通过数字式和模拟式的输入和输出,控制各种类型的生产过程。具有编程简单,使用方便,抗干扰能力强,在特殊的环境中仍能可靠地工作,故障修复时间短,维护方便,接口功能强等优点[5],因此非常适合风电系统使用。

  本文首先说明了了发电结构,选择罗克韦尔的Controllogix作为主控,实现PLC的风电VC++实现上位监控,讨论了VC++实现原理,给出了Controllogix的直驱风电通讯系统监控效果。

  2 发电通讯系统结构说明

  直接驱动型风电发电系统结构图如图1所示,包括风电机组,永磁同步发电机,背靠背变流器,由DSP为核心构成的变流器控制器,由PLC为核心构成的风力发电主控系统及上位机。通讯系统主要由PLC及上位机构成,PLC还要与变流器控制DSP之间进行通讯,由通讯系统实现对直驱型风电系统的监控,上位机与PLC之间采用串口通讯。PLC作为下位机使用,完成控制、数据采集,以及状态判别等工作;上位机用来完成数据分析、计算、信息存储、状态显示、打印输出等功能,从而实现对风电系统的实时监控。

  由图1可以看到,PLC既要与上位机连接,又要与变流器控制DSP连接,图1中变流器采用双DSP控制,其他还有变桨控制器等,可能涉及多个处理器,需要由PLC来进行协调控制,同时要由中央控制室的上位机进行集中监控,因此基于PLC的风力发电通讯系统作用非常重要。

图1 直接驱动型风力发电系统结构图

  本文选用罗克韦尔的Controllogix作为主控PLC,对直驱型风力发电通讯系统进行初步探索。Controllogix是罗克韦尔公司在1998年推出AB系列的模块化PLC,是目前世界上最具有竞争力的控制系统之一,Controllogix将顺序控制、过程控制、传动控制及运动控制、通讯、IO技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,最大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。对于Controllogix,在组建通讯网络时,Ethernet/ip、controlnet是比较常用的通讯协议,除此之外,Controllogix还支持devicenet、DH+、RS232、DH485等,而RS-232/DF1端口分配器扩展了控制器的通讯能力。因此,Controllogix比较适合用于构建风力发电通讯系统。

  3 基于VC++实现的通讯系统上位监控

  为了更加灵活的监控下位机系统的运行,并方便下位机功能的调试和扩充,本文基于VC++6.0开发了与直驱型风电通讯系统配套的上位机软件 CMonitor,可以提供良好的用户界面和工具栏、菜单等多操作途径,并配合形象的位图动画功能来实时显示系统实际状态和拓扑,可以完成对风电系统运行方式和运行参数的控制、修改和监视,完成对历史数据的收集和分析,方便用户对风电系统进行远程监控和调试。

  对下位机PLC串口通信模块进行相应初始化后便可以通过PLC的SCIRX和SCITX收发数据,由于PLC接收到的数据除了包含命令字外,可能还有其他的数据信息,因此针对不同类型的命令字必须有不同的处理方法。定义一个变量cmd来保存当前的命令字信息。

  struct {int ID; int counter;} cmd;其中ID是用来标识当前的命令字,counter则辅助记录当前命令字下总共处理过的数据字节数。利用变量cmd可以有效简化下位机通讯功能的实现过程,提高通信函数的稳定性。如图2所示,在SCI通信服务函数中,程序根据cmd.ID的值进入不同的分支,每个命令字的任务执行完毕后都将cmd.ID 赋为0,使空闲时进入0x0分支,不停检测新的指令,功能的修改或扩充只需要对相应分支做修改即可,易于维护。

图2 下位机串口通信函数流程图

  图3中列出了几种典型命令字的处理流程,它们均为图2所示流程图的一部分。图3(a)中cmd.ID为0,表示当前无命令字,程序将尝试从串口读取数据,这样一旦有新的命令字,程序便可以马上获知。图3(b)中所示为cmd.ID为0x01时的处理流程,此时表明上位机在测试通信是否正常,如果可以向串口发送数据,则程序在发送完毕表示成功的数据0x01后将cmd.ID重新赋值为0;否则,程序返回,这样cmd.ID未被修改,中断函数在下次运行时仍会处理0x01命令字。图3(c)为处理0x02命令字的流程,根据预先规定0x02对应的指令是禁止PWM输出,当cmd.ID为0x02时,修改相应的寄存器,禁止PWM输出,之后由于要向上位机发送执行成功的信号,也就是发送0x01,因此最后将cmd.ID的值修改为0x01(命令字0x01会在执行完毕后将cmd.ID赋值为0)。这样在下一次执行通信服务函数的时候将会直接进入0x01命令字分支。命令字0x03,0x04,0x05的处理流程与图3(c)相似。

图3 几种典型命令字的处理流程


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭