新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 光耦HCPL-316J的应用

光耦HCPL-316J的应用

作者:时间:2011-12-01来源:网络收藏

图3中,电阻R1需要根据实际的电流保护值大小进行调整,估算公式如下:
R1=(7-VD1-Vce)/0.25(kΩ)
式中,VD1-二极管D1上产生压降(V)
Vce-IGBT的导通管压降(V)
例如,对FS100R12KT3管,在管芯结温为125℃、流过电流为100A时,其Vce≈2.4V,假定此时VD1≈0.7V,则
R1=(7-VD1-Vce)/0.25=(7-2.4-0.7)/0.25=15.6(kΩ)
2.3 另一种带故障保护的伺服系统的驱动电路(方案2)
在图3的基础上,仅2个上管的驱动保护采用,2个下管的驱动直接采用普通的如TLP250、A3120等,电路更为简洁,同样也可达到4路均采用A316J的过流保护效果(实测的电流保护波形同图4)。

3 两种方案的电流保护波形一致性分析
从两种方案所得的实际电流保护波形是一样的实际结果来看.说明方案1与方案2本质上并没有区别。究其原因,主要是本驱动系统主回路驱动方式均采用单极性的特性决定的,在图3中,假设在正方向的速度设定下,完整的一个驱动周期如下:
(1)T1、T3导通,电流从电源+→T1→A→M→B→T3→电源-,正向流过电机M,电流增大,直到电流限幅值或电流保护值;
(2)T1断、T3保持导通,电流从A→M→B→T3→VD3,电流方向仍为+,处于续流阶段;在此阶段,电流处于下降趋势,幅值必定比a阶段小,所以在此阶段,即使下管驱动采用光耦A316J,也必不会达到光耦A316J的电流保护点,因此,下管采用光耦A316J与采用普通驱动光耦的结果是一样的;
(3)T1、T3导通,电流从电源+→T1→A→M→B→T3→电源-,正向流过电机M,电流增大,直到电流限幅值或电流保护值;
(4)T3断、T1保持导通,电流从A→M→B→VD2→T1,电流方向仍为+,处于续流阶段;同样,在此阶段,电流处于下降趋势,幅值必定比c阶段小,也必不会达到光耦A316J的电流保护点。
所以,下管是采用光耦A316J或采用普通驱动光耦,得到的电流保护结果是一样的,从电路简介性看,可采用普通光耦,且价格相对低点;从减少所需器件种类来看,可采用A316J,价格相对高点。

4 注意事项
在两种方案电路中,均要关注:
(1)负载问题:在图3中,如果负载为电感性负载,则由于续流是通过二极管回路进行,即电流下降梯度非常慢,假使在下一周期只要一打开IGBT,光耦马上检测到过流信号,在不大于3μs内实施对IGBT实施软关断,即在一个PWM周期内,IGBT最小导通时间为此延时时间。假定在此段时间内电流的增加多于下降,则会随着导通时间的加长,电流越来越大,超越IGBT的承受能力,造成IGBT损坏,这一点在中必须注意;
(2)时序问题:在上电时,如果光耦供电电源未稳定之前,VIN+、VIN-之间即满足VOUT输出为高的条件,则可能会造成驱动输出电平不够高、IGBT处于放大区的工作状态,容易造成IGBT的损坏,所以上电时,一定要保证在供电电源充分稳定后,再允许IGBT工作;同样,掉电时,也要充分保证光耦供电电源在未跌落之前关断驱动VOUT的输出,否则,驱动VOUT输出很容易出现高频抖动(如图5所示:即是由于电源已由17V跌落到14V时,还未关断送出到VIN+、VIN-的输出,结果在运行过程中突然掉电即发生IGBT损坏),更是对IGBT的安全工作造成威胁;

本文引用地址:http://www.eepw.com.cn/article/178317.htm

f.jpg


(3)IGBT的Vce分散性问题:由于IGBT的导通管压降的分散性,会导致采用相同的电流检测电阻,会得到不同的电流保护值,所以,实际中电流采样电阻是与估算值偏差较大,应综合所有工况、以达到所需的电流值来确定电流采样电阻值;
(4)光耦A316J的电流采样基准分散性问题:同上,由于光耦A316J的电流采样基准分散性,亦会导致采用相同的电流检测电阻,会得到不同的电流保护值。

5 两种方案优劣分析
方案2由于只有下管采取光耦A316J,比方案1电路更为简洁,也使电流保护调节变得更为简单,所以实际中推荐使用方案2。
采用光耦A316J作电流保护用,虽然电路变得简单、可靠,但与传统的过流保护电路一样,仍然无法解决电流保护点比较确定的问题:传统的过流保护电路,大都采用RC滤波的方式作电流检测输入,有可能在滤波电容C上的电荷在此PWM周期未放掉完,下一周期PWM又开通,于是电流又上升,检测到的电流信号又会继续给滤波电容C充电,即相当于保护延时变短,则保护点就会降低。

6 结束语
从上述的实验结果来看,虽然使用光耦A316J在电路结构方面比传统的过流保护电路更为简洁、可靠,也使电流保护调节变得更为简单,所以现在国内应用越来越广泛。但也存在着如前面所述和传统的过流保护电路一样的缺点,并且在实际应用中一定要注意上下电的时序配合问题,否则,在此过程IGBT很容易损坏。
实验证明,只要解决好上述的问题,该光耦的优越性还是很明显的,该光偶目前在我公司的交直流伺服产品上都已经得到了很好的应用。


上一页 1 2 3 下一页

关键词: 应用 HCPL-316J 光耦

评论


相关推荐

技术专区

关闭