首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> 栅极驱动

栅极驱动 文章 进入栅极驱动技术社区

深度剖析IGBT栅极驱动注意事项

  • IGBT晶体管的结构要比 MOSFET 或双极结型晶体管 (BJT) 复杂得多。它结合了这两种器件的特点,并且有三个端子:一个栅极、一个集电极和一个发射极。就栅极驱动而言,该器件的行为类似于 MOSFET。它的载流路径与 BJT 的集电极-发射极路径非常相似。图 1 显示了 n 型 IGBT 的等效器件电路。图 1. IGBT的等效电路图 2. IGBT的导通电流为了快速导通和关断 BJT,必须在每个方向上硬驱动栅极电流,以将载流子移入和移出基极区。当 MOSFET 的栅极被驱动为高电平时,会存在一个从双
  • 关键字: 安森美  IGBT  栅极驱动  

如何通过实时可变栅极驱动强度更大限度地提高SiC牵引逆变器的效率

  • 牵引逆变器是电动汽车 (EV) 中消耗电池电量的主要零部件,功率级别可达 150kW 或更高。牵引逆变器的效率和性能直接影响电动汽车单次充电后的行驶里程。因此,为了构建下一代牵引逆变器系统,业界广泛采用碳化硅 (SiC) 场效应晶体管 (FET) 来实现更高的可靠性、效率和功率密度。图 1 所示的隔离式栅极驱动器集成电路 (IC) 提供从低电压到高电压(输入到输出)的电隔离,驱动逆变器每相的高边和低边功率模块,并监测和保护逆变器免受各种故障的影响。根据汽车安全完整性等级 (ASIL) 功能安全要求,栅极驱
  • 关键字: TI  栅极驱动  

优化SiC MOSFET的栅极驱动

  • 在高压开关电源应用中,相较传统的硅MOSFET和IGBT,碳化硅(以下简称“SiC”)MOSFET 有明显的优势。使用硅MOSFET可以实现高频(数百千赫兹)开关,但它们不能用于非常高的电压(>1 000 V)。而IGBT 虽然可以在高压下使用,但其 “拖尾电流 “和缓慢的关断使其仅限于低频开关应用。SiC MOSFET则两全其美,可实现在高压下的高频开关。然而,SiC MOSFET 的独特器件特性意味着它们对栅极驱动电路有特殊的要求。了解这些特性后,设计人员就可以选择能够提高器件可靠性和整体开关性
  • 关键字: SiC MOSFET  栅极驱动  安森美  

具有集成反激式控制器的智能栅极驱动光耦合器

  • 通过集成反激式控制器,ACPL-302J 器件允许在器件旁边放置更少的分立元件和更小的变压器和电容器,从而减少设计的整体尺寸并限度地减少电磁干扰 (EMI) 和 IGBT 通道之间的噪声耦合。通过减少设计中的这些元素,设计人员可以实现显着的成本节约。新型 ACPL-302J 是一款智能栅极驱动光电耦合器,可改进隔离电源并简化栅极驱动设计。ACPL-302J 具有用于 DC-DC 转换器的集成反激式控制器和全套故障安全 IGBT 诊断、保护和故障,提供完整的经济高效的栅极驱动解决方案(图 1)。该器件具有
  • 关键字: CODACA  栅极驱动  

使用隔离式栅极驱动器的设计指南(三):设计要点和PCB布局指南

  • 本设计指南分为三部分,将讲解如何为电力电子应用中的功率开关器件选用合适的隔离栅极驱动器,并介绍实战经验。上两期分别讲解了隔离式栅极驱动器的介绍与选型指南以及使用安森美(onsemi)隔离式栅极驱动器的电源、滤波设计与死区时间控制,本文为第三部分,将为大家带来设计中的要点和PCB布局指南。设计驱动器VCC时,关于上电延迟有哪些注意事项?对于所使用的驱动器,要设计一个高能效且快速的电路,启动时间是一个重要因素。因此,启动时间必须要短。但是,启动时间受上电延迟的限制,上电延迟是指驱动器使能到首次栅极输出的时间。
  • 关键字: 安森美  栅极驱动  

高压栅极驱动IC自举电路的设计与应用指南

  • 本文讲述了一种运用功率型MOSFET和IGBT设计高性能自举式栅极驱动电路的系统方法,适用于高频率,大功率及高效率的开关应用场合。不同经验的电力电子工程师们都能从中获益。在大多数开关应用中,开关功耗主要取决于开关速度。因此,对于绝大部分本文阐述的大功率开关应用,开关特性是非常重要的。自举式电源是一种使用最为广泛的,给高压栅极驱动集成电路(IC)的高端栅极驱动电路供电的方法。这种自举式电源技术具有简单,且低成本的优点。但是,它也有缺点,一是占空比受到自举电容刷新电荷所需时间的限制,二是当开关器件的源极接负电
  • 关键字: onsemi  栅极驱动  

TI功能安全栅极驱动诊断保护特性概述

  • TI推出的功能安全栅极驱动UCC5870-Q1,旨在帮助客户实现电驱系统功能安全ASIL-D等级。其内部集成了丰富的保护以及诊断机制,对栅极驱动器本身以及开关管进行保护,可优化设计成本,简化设计复杂度。本文将对UCC5870-Q1内置的这部分诊断保护机制进行概述。栅极驱动器保护 对UCC5870-Q1本身进行监控保护的机制主要是过温警示(TWN),热关断(TSD)以及丰富的内部自检(BIST)。过热保护(TWN和TSD)是在IC上电后运行过程中持续监控的。分成原边和副边的TWN和TSD。其中,T
  • 关键字: TI  栅极驱动  

东芝推出智能栅极驱动光耦,有助于简化功率器件的外围电路设计

  • 中国上海,2022年8月31日——东芝电子元件及存储装置株式会社(“东芝”)宣布扩大其智能栅极驱动光耦产品线,推出一款输出电流为2.5A的智能栅极驱动光耦---“TLP5222”。这是一种可为MOSFET或IGBT等功率器件提供过流保护的隔离栅极驱动IC,内置保护操作自动恢复的功能。该产品于今日开始出货。 TLP5222持续监测其驱动的功率器件的漏极-源极电压(VDS)[1]或集电极-发射极电压(VCE)[2]。内置的过流检测与保护功能可检测出功率器件中因过流导致的任何VDS或VCE上升,并执行
  • 关键字: 东芝  栅极驱动  光耦  

东芝推出五款新型MOSFET栅极驱动IC,助力移动电子设备小型化

  • 东芝电子元件及存储装置株式会社(“东芝”)今日宣布,在其TCK42xG系列MOSFET栅极驱动IC产品中新增五款适用于可穿戴设备等移动电子设备的产品。该系列的新产品配备了过电压锁定功能,能根据输入电压控制外部MOSFET的栅极电压。                                      
  • 关键字: MOSFET  栅极驱动  

简单的速率控制技术可降低开通能耗

  •   Wolfgang Frank (英飞凌)  摘 要:电力电子系统(如马达)中的开关损耗降低受到电磁干扰(EMI)或开关电压斜率等参数的限制。通常是通过选择有效的功率晶体管栅极电阻来解决这一问题。但这在运行中是无法自主进行调整的。  本文将介绍一种通过并联常规栅极驱动芯片来攻克这一难题的简单方法。文中还介绍了与开通能耗改进有关的表征数据的评估。  关键词:马达;开关损耗;EMI;开关电压斜率;栅极驱动  0 引言  连接MOS栅极功率晶体管的栅极电阻选型,一般有2个优化目标。首先,应通过选择电阻值较小的
  • 关键字: 202006  马达  开关损耗  EMI  开关电压斜率  栅极驱动  

一个用于驱动栅极驱动变压器的简单电路

  • 在我的上一篇关于EE时代的电源技巧博文中,我讨论了如何使用一个双开关反激式电路来提升低功耗隔离式转换器的效率。与单开关反激式电路相比,双开关反激式电路的主要代价就是需要一个浮动的高侧驱动。一个栅极驱动变
  • 关键字: 栅极驱动  变压器  

IR推出高度紧凑的10A AUIR08152S栅级驱动IC

  • 全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 推出高度紧凑的AUIR08152S车用栅级驱动IC。新产品具备超过10A的大电流输出,可以帮助汽车级和工业级大功率开关应用缩减系统尺寸、提升性能。
  • 关键字: IR  栅极驱动  

飞兆下一代TINYBUCK™负载点调节器满载效率提供高达15A的输出电流

  • 服务器、平板电脑、笔记本电脑、电信、游戏和通用负载点(POL)调节器应用设计人员正在不断寻找能提升设计中效率的方法,以便满足能源标准、延长电池寿命并降低总体拥有成本。
  • 关键字: 飞兆  POL  栅极驱动  

电源设计中IC驱动电流不足的解决方法

  • 电源设计中IC驱动电流不足的解决方法,在电源设计中,工程师通常会面临控制IC驱动电流不足的问题,或者面临由于栅极驱动损耗导致控制IC功耗过大的问题。为缓解这一问题,工程师通常会采用外部驱动器。中心议题:
  • 关键字: 电源设计  驱动IC  栅极驱动  

新型降压稳压器拓扑在宽输入、高用电量负载中的应用

  • 摘要:本文介绍了一种“零电压开关(ZVS)降压”的新型降压稳压器拓扑,说明了其给系统带来的优势和其在Picor Cool-Power ZVS降压稳压器系列产品中的集成。
  • 关键字: 稳压器  栅极驱动  MOSFET  201211  
共21条 1/2 1 2 »

栅极驱动介绍

您好,目前还没有人创建词条栅极驱动!
欢迎您创建该词条,阐述对栅极驱动的理解,并与今后在此搜索栅极驱动的朋友们分享。    创建词条

热门主题

栅极驱动器    树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473