新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 时域时钟抖动分析(一)

时域时钟抖动分析(一)

作者:时间:2012-03-19来源:网络收藏

新型的高速 ADC 都具备高模拟输入带宽(约为最大采样频率的 3 到 6 倍),因此它们可以用于许多欠采样应用中。ADC 设计的最新进展极大地扩展了可用输入范围,这样系统设计人员便可以去掉至少一个中间频率级,从而降低成本和功耗。在欠采样接收机设计中必须要特别注意采样,因为在一些高输入频率下会成为限制信噪比 (SNR) 的主要原因。

本文引用地址:http://www.eepw.com.cn/article/177737.htm

本系列文章共有三部分,“第 1 部分”重点介绍如何准确地估算某个源的,以及如何将其与 ADC 的孔径组合。在“第 2 部分”中,该组合抖动将用于计算 ADC 的 SRN,然后将其与实际测量结果对比。“第 3 部分”将介绍如何通过改善 ADC 的孔径抖动来进一步增加 ADC 的 SNR,并会重点介绍时钟信号转换速率的优化。

采样过程回顾

根据 Nyquist-Shannon 采样定理,如果以至少两倍于其最大频率的速率来对原始输入信号采样,则其可以得到完全重建。假设以 100 MSPS 的速率对高达 10MHz 的输入信号采样,则不管该信号是位于 1 到 10MHz 的基带(首个Nyquist 区域),还是在 100 到 110MHz 的更高 Nyquist 区域内欠采样,都没关系(请参见图 1)。在更高(第二个、第三个等)Nyquist 区域中采样,一般被称作欠采样或次采样。然而,在 ADC 前面要求使用抗混叠过滤,以对理想 Nyquist 区域采样,同时避免重建原始信号过程中产生干扰。

图 1 100MSPS 采样的两个输入信号显示了混叠带来的相同采样点

抖动

SNRJitter[dBc]=-20×log(2π×fIN×tJitter)(2)

正如我们预计的那样,利用固定数量的时钟抖动,SNR 随输入频率上升而下降。图 4 描述了这种现象,其显示了 400 fs 固定时钟抖动时一个 14 位管线式转换器的 SNR。如果输入频率增加十倍,例如:从 10MHz 增加到 100MHz,则时钟抖动带来的最大实际 SNR 降低 20dB。

如前所述,限制 ADC SNR 的另一个主要因素是 ADC 的热噪声,其不随输入频率变化。一个 14 位管线式转换器一般有 ~70 到 74 dB 的热噪声,如图 4 所示。我们可以在产品说明书中找到 ADC 的热噪声,其相当于最低指定输入频率(本例中为 10MHz)的 SNR,其中时钟抖动还不是一个因素。

让我们来对一个具有 400 fs 抖动时钟电路和 ~73 dB 热噪声的 14 位 ADC 进行。低输入频率(例如:10MHz 等)下,该 ADC 的 SNR 主要由其热噪声定义。由于输入频率增加,400-fs 时钟抖动越来越占据主导,直到 ~300 MHz 时完全接管。尽管相比 10MHz 的 SNR,100MHz 输入频率下时钟抖动带来的 SNR 每十倍频降低 20dB,但是总 SNR 仅降低 ~3.5 dB(降至 69.5dB),因为存在 73-dB 热噪声(请参见图 5):

现在,很明显,如果 ADC 的热噪声增加,对高输入频率采样时时钟抖动便非常重要。例如,一个 16 位 ADC 具有 ~77 到 80 dB 的热噪声层。根据图 4 所示曲线图,为了最小化 100MHz 输入频率 SNR 的时钟抖动影响,时钟抖动需为大约 150 fs 或更高。

确定采样时钟抖动

如前所述,采样时钟抖动由时钟的计时不准(相位噪声)和 ADC 的窗口抖动组成。这两个部分结合组成如下:

我们在产品说明书中可以找到 ADC 的孔径口抖动 (aperture jitter)。这一值一般与时钟振幅或转换速率一起指定,记住这一点很重要。低时钟振幅带来低转换速率,从而增加窗口抖动。


上一页 1 2 3 4 下一页

关键词: 分析 抖动 时钟 时域

评论


相关推荐

技术专区

关闭