新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 简述UPS电源系统的可用性设计

简述UPS电源系统的可用性设计

作者:时间:2013-07-22来源:网络收藏

前言

本文引用地址:http://www.eepw.com.cn/article/174922.htm

程控交换机、数据通讯处理系统、基站、安防监控系统等设备在运行中要求交流供电系统不能停电,为了提高这些设备工作的可靠性和可维护性,很多企业都对其配备了UPS电源系统。UPS(即Uninterruptible Power )电源系统由整流器、储能装置、逆变器和静态开关等几部分组成。目前,国内外市场上有很多种类的UPS系统,其主要功能与原理基本相同。

UPS主要由整流系统、储能系统、变换系统和系统四个部份组成,在电力供电系统供电时整流系统就是一个将交流电(AC)转化为直流电(DC)的装置,经滤波稳压后供给逆变器或者给储能系统充电,起到充电器的作用。储能系统是UPS用来储存电能的装置,它由若干个蓄电池串联而成,电池容量的大小决定了其维持放电(供电)的时间。储能系统的主要功能是在电力供电系统正常时,将电能转换成化学能储存在电池内部;在电力供电系统故障时,将化学能转换成电能提供给逆变器或负载。变换系统是一种将直流电(DC)转化为交流电(AC)的装置,它由逆变桥、控制逻辑电路和滤波电路组成。

对于可维修的系统来说,还有一个可用性的指标,其定义是

A = MTBF / (MTBF + MTTR)

其中A是一个百分比指标,MTTR值得是平均故障修复时间。如果系统出现故障时可以非常快速的恢复,那么系统的可用性指标就比较高。对于电网这类对象来说,使用可用性指标可以更加直观的衡量其可靠程度。而对于在关键场合经常使用并联冗余配置来说,可用性指标比可靠性指标更具有现实意义。

可靠性/可用性指标都是统计意义上的概念,一个电源系统的可靠性/可用性与构成系统的各个模块的可靠性/可用性之间也存在统计意义上的关联。

假设电源系统中存在两个电源模块,而这两个模块是并联工作的,其中一个和另外一个是互相独立的,见下面图中所示

那么考察这两个模块组合起来的系统的可用性Asys与每个模块各自的可用性A1与A2的关系就有

Asys = 1 – (1 – AFR1)×(1 – AFR2)

另外一种可能是系统中这两个模块是串联的,见下面图中所示

那么这两个模块组合起来的系统的可用性Asys与每个模块各自的可靠性A1,A2的关系就有

Asys = A1×A2

由于可用性肯定是处于0~1之间的数值,因此两个并联模块的总体可用性要高于各自的可用性,而两个串联模块的可用性要低于各自的可用性。

UPS电源的可靠性

从单个UPS的设计来说,可以把整个产品按照模块进行划分,下面图中是一个典型的UPS系统结构图

从图中可以看到,UPS各个模块之间的依赖关系比较复杂,但是还是可以分出串并联的关系如下

辅助电源与所有其他模块都是串联的,因此辅助电源的可用性直接限制了系统能够达到的最高可用性等级;

控制模块与除辅助电源之外的其他模块也都是串联的,因此控制模块的可用性也会直接影响到系统总体可用性设计;

对于负载端来说,能够直接相连的只有旁路模块与逆变模块,而这两个模块是并联的;

PFC/整流模块与电池升压模块是并联的,之后再与逆变模块串联;

从能源提供者来讲,这里旁路电源与市电电源是两路独立的电源,而电池能源是由市电经过充电模块提供的。如果充电模块故障的话电池就没有能量存储,实际上也无法实现正常的UPS功能,因此市电-充电模块-电池也是串联的。这样可以画出整个UPS系统的可用性串并联路径图

从这一路径关系里可以看到,总共存在3条并联的路径,而每一条路径各自又是由数个模块串联起来的。正与前面分析的一样,辅助电源与控制模块的可用性是串联在所有通路上的,因此如果这两者设计有缺陷的话UPS的可用性是无法做的很高的。电池回路串联有最多的模块数量,也是可用性最低的一条路径。

要提升系统的可用性首先要提升关键路径的可用性。从路径图上可以看到就是控制模块与辅助电源。辅助电源是整个UPS的关键点,如果辅助电源不工作整个UPS都将瘫痪。提升辅助电源可用性的方式可以有很多种方案:一种是改进设计,提升MTBF;一种是对辅助电源也适用并联冗余设计,提升可用性;再一种是对UPS的三条可用性路径分别使用不同的辅助电源,相当于把原来完全串联的路径改成并联。在UPS设计中可以混合使用这几种方式,由于上面三条可用性通路是并联的,而旁路通路本身是可用性最高的一条,因此最为推荐的设计就是优先提升旁路的可用性,对旁路单独使用一套辅助电源供电,并且这套电源的尽量采用简单的设计,以拥有高的MTBF。

控制模块同样也是影响到所有路径的关键点,也必须拥有高的可用性。参照辅助电源的处理方法,也可以给相对独立的旁路路径配备单独的控制模块,并且通过与其余控制功能协调工作来达到高可用性的目的。同样,旁路上的控制模块也要尽量简单,以提升可靠性。一种推荐的做法是旁路控制模块不断的检测UPS主控制模块的状态,如果发现主控制模块,则自动切换到旁路方式。此外,对于主控制模块来说也可以通过冗余的方式来提升可用性,比如采用双MCU结构,当一个MCU检测到另外一个MCU发生故障时可以接管另一个MCU的功能,或者采取紧急措施如转旁路来保证负载不断电。

对于UPS来说,电池是保证UPS能够在市电或者旁路断电发生时继续维持供电的关键,但是串联环节最多,也恰恰是可用性最为薄弱的环节。一般电池规格书里面会说明充电电流不要超过0.15CC,这就意味着电池在UPS满载放电放完之后要用数倍的时间才能重新充满,从这个意义上讲其可用性一般都在20%以下。但是由于电池并不是连续工作的,只要在电池放完前市电恢复,在重新充电的过程中也没有再发生断电,那么负载仍然不会受到影响。从这方面来看,电池的可用性在只会发生短时间的断电情况下还是很高的。

再重新来审视电池回路的可靠性,在电池与市电之间还有一个充电器模块环节。如果充电器损坏则电池在一次放完电之后就无法再充回,导致下一次市电停电时负载断电。但是充电器只是在电池需要充电时才会工作,因此如果能够及时对充电器的状态进行监控,在发现充电器异常时及时报警,就能够避免充电器故障带来的问题,从而提升整个UPS的可用性。对于电池也有一样的手段。电池在使用多次之后也会面临容量下降和失效的问题,但是如果能够通过电池状态监控发现电池失效并及时更换,也能够有效提升UPS的可用性。

UPS系统的可靠性

使用UPS电源系统时,不仅要定期对各主要元件进行检查,还要对UPS电池组的各个电池单元端电压与内阻进行检测。若发现其电池组的某个电池单元的端电压差值>0.4 V或者内阻>0.08Ω的时候,就应该断开工作异常的电池单元与电池组的连接导线,使用外置的独立充电器对工作异常的电池单元进行单独充电,将其充电电压(对12V蓄电池而言)保持在13.5~13.8 V之间,充电时间控制在10~12h.需要注意的是,UPS电源在使用过程中,电池组内的各个电池单元的充电会不一致,可能产生电池单元端电压以及电池内阻的不平衡。这些是无法依靠UPS电源系统内部充电回路对其充电而得到消除和校正的,若不及时对不平衡电池单元进行脱机均衡充电的话,可能导致上述问题更加严重。

为了解决这一瓶颈,可以在UPS系统中加入一个特性和电池互补的备用电源:在市电断电时的不需要很快反应,但是在长时间停电条件下能够持续提供电力,燃油发电机组就是最为合适的一个选择。因此在UPS系统配置上可以加入一个自动切换装置,在市电停电后切换到发电机组。这样一来能够极大的提升长时间断电条件下UPS系统的可用性。如此则UPS系统的可用性路径就成为

虽然在可用性路径里面多串联了一个市电与发电机切换用的ATS,增加了单调路径发生故障的概率,但是相对长时间断电带来的可用性问题来说还是值得的。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭