新闻中心

EEPW首页 > 光电显示 > 设计应用 > 蓝光LED光子晶体技术原理及制作流程

蓝光LED光子晶体技术原理及制作流程

作者:时间:2012-04-27来源:网络收藏

为回避日亚化学的 加萤光粉制专利,各业者纷纷投入其它能达到散发出白光的 ,目前最被期待的是利用UV 来达到白光的目的,但是,UV LED 仍旧有著光外漏及低亮度两个不易克服的困难。使得除了继续努力来解决相关的问题外,不得不再去寻求其它的材料或技术来达到散发出白光的LED 技术。

本文引用地址:http://www.eepw.com.cn/article/168116.htm

  在1987 年,国籍相异且分居不同地点的两位学者,Eli Yablonovitch 与Sajeev John 几乎同一时间在理论上发现,电磁波在周期性介电质中的传播状态具有频带结构,利用两种以上不同折射率(或介电常数)材料做周期性变化来达成能带的物质。所以(PhotonicCrystal)被发现已将近20 年后的今天,在各领域的应用有著相当令人激赏的表现,一直是备受研发者所关心的一项技术。

  目前利用二次元来达到完成白光LED 的技术,已陆续出现突破性的发展,使得未来Photonic Crystal LED 已成为众所瞩目的焦点与摆脱日亚化学专利的期望寄托。

  1、光子特性与结构

  光子晶体随著波长不同,会出现于周期性的结构,可以分别发展出一次元、二次元及三次元的光子晶体。而在这些结构当中,最出名的应该是属于三次元的光子晶体结构,但是,三次元的光子晶体在制造上及商品化,就今天的技术而言是非常困难的。原因是目前主要研究的领域还是保留在二次元的光子晶体,所以,今天在LED 领域各业者相竞开发的光子晶体LED,也是二次元的光子晶体。

  一般的材料构造是属于固定构造,所以材料本身会具有的一定的折射率。波数(Wave Number)与频率对于一般材料折射率的影响,横轴是物质的波数(Wave Number)、纵轴是频率、斜线就代表折射率。折射率是非常等比例的成长,也就是代表说不管什么样的波数、什么样的波长,它的折射率都是一定的。那么光子晶体是什么样的结构,再从另外一个角度来说明。光子晶体的特性就是周期构造,也因此会产生多重反射。

  光子晶体所构成的波数矢量数和光的频率比例,频率的曲线不是那么单纯,曲线已经会变得非常复杂,这个曲线会随著光的多方向性,就是异向性而出现变化,而随著它的偏光性,就可以运用来设计出不同的产品。光子晶体它有一个很出名的特性,相信大家都知道,就是它有一个光能隙。在光能隙这个区域里面,光线是不存在的。这边的曲线也跟图一A 是的斜率意义是一样的,是折射率的相反。只要在这一点,斜率等于零。所以在这一点以外,光的速度就不会产生零这个现象。所以也可以说,光子晶体也可以控制光的速度。

  就简单来说,运用光子晶体的目的浓缩成一句话,就是要利用周期构造,以人工的方式来控制这个光学特性。

  2、光子晶体与有固态发光元件差异

  光子晶体有3 个光学特性,可以利用人工的方式来加以控制而达到不同的目的。第一个特性是,如果利用光能隙的话,就可以遮蔽光通过。利用这个特性可以把光锁在一个相当狭小的区域里面。目前产业界中,就有利用这个特性把光聚集在一个区域里面,成一个集成电路。

  另外一个特性是,就是光子晶体有异向性,光子晶体的光会朝向很多方向散射,原因是光子晶体可以随著光的偏光角度,出现透光与不透光(某个角度它可以透过,但是有些角度是没办法透过)。

  第三个特性就是,光子晶体的曲线非常复杂、变化多端。因为光子晶体的曲线变化非常快,非常不规则,所以只要波长稍有变化,那就可以看到进入光子晶体的光,它的角度就会偏离得非常大。在优点方面,光子晶体的面积要比传统集成电路缩小了千分之一,所以,相对的,电路的积集度就比过去增加了1,000 倍。而另一个优点是折光性倍数可以达到以往1,000 倍。

  另外,也可以利用偏光性,改变光的性质,可以将以往正方形的偏光浓缩成以往体积的千分之一。简单来说,光子晶体它有什么样的好处与特性?积集度高,体积小,成本低。3、利用光子晶体出LED

  除此之外,光子晶体还有其它的特性。利用它的特性,可以出光子晶体LED。大致上可以分为2 种,一种是LED,一种是雷射二极管(Laser Diode)。LD 雷射二极管部分我们可以分为光子晶体 DFB 雷射二极管(Photonic crystal DFB LD)与Photonic crystal defect LD。光子晶体DFB 雷射二极管是大家比较了解的结构,其雷射值可以控制在非常低的区域来做发射,这样子的结构,是必须存在光能隙的区域,也因为是如此,所以这样结构要实现商品化是比较困难。

  相对的利用光子晶体的结构制作成LED 是比较简单。有关光子晶体常常被混淆的部分是,以为是利用DFB 雷射,所以就会有人认为是不是利用特定的周期或波长来运用?其实答案是不对的。理由是DFB 雷射跟光子晶体LD,它的入射(Incident)和衍射(Diffracted)的光是受限制的。但是相对光子晶体的入射光角度和衍射光角度是不受限制的。所以并不是利用特定的周期或波长来加强效率,这个特性对于LED来说是非常重要的。

  4、光子晶体蓝色LED

  利用蓝色LED 来制作的白光LED,蓝色LED 会发出蓝色的光,但是各个蓝色的光会根据YAG 萤光粉部分会转换成黄光,利用蓝色和黄色的光,可以让LED 产生出白光,白光LED 被应用在白光照明灯跟液晶背光的光源,这种白光LED 被称为固体白色照明。这种光有3 个特色:体积小,省能源,寿命长,但是有一个很大的问题需要克服:比起萤光灯,这样的白光LED 发光效率比较差,为了解决这个问题,便可以利用光子晶体来解决这样的问题。

  为了克服,LED 发光效率比较低的问题,可以将光子晶体放在LED 里,利用光子晶体来提高发光效率,这样生产出的蓝光光子晶体LED 的特色是周期长,要让发光效率提升,有几个很重要的技术。传统的LED 制作非常简单,但是存在的问题点就是发光效率比较差,因为是传统的蓝光LED表面的全反射,从活性层出来的光线,会被表面全反射掉。这样的光就没有办法发射到LED外面。

  针对这个问题,CREE 在制作过程中做了一些改善的动作,在Deformed Chip 中可看到活性层旁边是一个斜面,利用这样斜面的结构,可以让发光效率提高,同样是针对提高效率的问题,我们设计出了二次元的集积表面,利用这样子的结构,可以让表面的发光效率提高,所以我们是利用半导体的Planar 技术,这是一个很精密的技术,用来控制这个构造。

  Penetration 是利用二次元的活性层让光穿过,这样的结构可以使发光效率高达80%,但是也有一个问题需要克服,那就是内部量子效率会降低。由于为了要让光透过活性层,就会因为达到透过活性层这个目的而降低内部量子效率。Resonant Cavity 是在光子晶体LED 上面加载共振器,这个设计称为共振器LED,在LED的周边,我们配置上光子晶体,利用这个设计,可以把他LED 效率提高60%,而前面提到我们利用Planar 技术所开发出来的Surface Grating 的设计方式虽然不错,但是在电流的注入上会有一些问题。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭