关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > ADN8831在光器件温度控制中的应用

ADN8831在光器件温度控制中的应用

作者:时间:2010-12-26来源:网络收藏

  第二部分是差分放大。即将目标温度对应下的电压和设定温度点的电压进行比较之后比例放大。

  第三部分是补偿网络。该补偿网络采用硬件PID(比例—积分—微分)控制,由运放、电阻、电容组成,它的优点是可靠性高。比例调节的作用是按比例反应系统的偏差,一旦系统有偏差,比例调节立即产生作用以减小系统偏差。比例作用大可加快系统调节,但过大的比例系数会到导致系统的不稳定。积分调节的作用是使系统消除稳态误差,提高系统的准确度,但同时也会导致系统的响应变慢。微分调节的作用是反应系统偏差信号的变化率,能预见偏差信号的变化趋势,因此能产生超前的控制作用,改变系统的动态性能。在实际调节过程中应注意折中超调和快速响应的问题,当超调较严重时,应适当减小比例系数、增加积分时间、减小微分时间,响应速度慢时,调节方法与上面相反。

  作为H桥的驱动器工作在线性、开关两种模式下,线性模式下效率虽然很低但减小了外围器件的体积,开关模式则恰好相反,因此这种设计达到互补的效果。

  第五部分是由四个功率MOSFET组成的H桥驱动电路。H桥是分别由两个P型、N型功率MOSFET对和TEC组成的。四个MOSFET组成H的4条垂直腿,而TEC组成H的横杠,TEC相当于一个阻值很小的电阻,如图4所示。当驱动Q1、Q3导通时,电流沿 的方向流过TEC,TEC的冷端变成热端放出热量对目标物体加热,Q2、Q4导通时,电流沿 的方向流过TEC,此时目标物体被制冷。切断任意对角线上的两个MOSFET的开关信号使电流沿单方向流过TEC,此时可以控制除TEC外的加热源,如加热片、大功率电阻等。

  H桥结构

  图4,TEC控制的H桥结构

  第六部分是LC滤波电路。为了提高TEC温度的稳定性,流过TEC的纹波电流应尽可能的小,在H桥之后必须加LC滤波电路滤除PWM的开关频率以达到稳定TEC电压的目的。高的开关频率虽然减小了电感、电容的体积,但同

时也会带来EMI的影响,因此在系统设计时应综合考虑这些因素。

  2.ADN8831的

  基于MEMS(微机电系统)的F-P(法布里-珀罗)腔可调谐光滤波器(TOF),由于构成其腔长度的支撑材料具有一定的热膨胀系数,因此当环境温度变化时,腔长会随着温度的变化而发生变化,这样TOF的中心波长就会发生漂移,最终会影响信号波的锁定。另外,利用温度对中心波长的影响,可以通过控制TOF的工作温度使起始波长漂移到系统所要求的波长范围,这样通过克服了工艺过程中起始波长难以控制的问题。

  基于G-T(Gires-Tournois)标准具的多波长可调谐色散补偿器(TDC),利用G-T标准具,使光信号中不同的光谱分量所传输的光程差不同,产生周期性的色散补偿效果。影响光程差的因素有标准具谐振腔的折射率、腔长、入射角,当改变G-T腔的温度时,折射率和腔长的变化会造成光程差的改变,使得色散曲线发生平移,从而实现色散的调节。此时利用材料的温度特性,只要精度高、响应时间快就可以设计出可动态补偿的TDC。



评论


相关推荐

技术专区

关闭