新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > ADC驱动器或差分放大器设计指南

ADC驱动器或差分放大器设计指南

作者:时间:2010-11-02来源:网络收藏

图2:的输入阻抗。

因为两个输入端之间的电压被负反馈驱动到零,因此两个输入端处于连接状态,输入阻抗RIN就简单地等于2×RG。为了匹配传输线阻抗RL,需要将由公式11计算得到的电阻RT跨接在输入端。图3给出了典型的电阻值,其中RF =RG=200Ω,理想的RL, dm=100Ω,RT=133Ω。

eq11
(11)

匹配100Ω传输线 www.elecfans.com

图3:匹配100Ω传输线。

单端输入的端接更加麻烦。图4描述了采用单端输入和差分输出的工作原理。

single-ended input to adc driver

图4:采用单端输入的例子。

虽然输入是单端的,但VIN, dm等于VIN。因为电阻RF和RG是相等和平衡的,因此增益是1,而且差分输出VOP–VON等于输入,即4Vp-p。VOUT, cm=VOCM=2.5V,而且从下方的反馈电路可以看出,输入电压VA+和VA-等于VOP/2。

根据公式3和公式4,VOP=VOCM+VIN/2,即2.5V±1V的同相摆幅;VON=VOCM–VIN/2,即2.5V±1V的反相摆幅。这样,VA+和VA-的摆幅等于1.25V±0.5V。必须由VIN提供的电流交流分量等于(2V–0.5V)/500Ω=3mA,因此到地的电阻必须匹配,从VIN看过去为667Ω。

当每个环路的反馈系数都匹配时,公式12就是计算这个单端输入电阻的通式,其中RIN, se是单端输入电阻。

eq12
(12)

这是计算终结电阻的出发点。然而值得注意的是,增益公式基于零阻抗输入源的假设。由于存在单端输入造成的不平衡而必须加以匹配的重要源阻抗只会增加上面RG的阻值。为了保持平衡,必须增加下面RG的阻值来实现匹配,但这会影响增益值。虽然可以为解决端接单端信号问题而采用一个封闭形式的解决方案,但一般使用迭代的方法。在下面的例子中这种需求将变得很明显。

在图5中,为了保持低的噪声,要求单端到差分增益为1,输入终结电阻为50Ω,反馈和增益电阻值在200Ω左右。

根据公式12可以算出单端输入电阻为267Ω。公式13表明,并联电阻RT应等于61.5Ω,才能将267Ω输入电阻减小至50Ω。

single-ended input impedance
图5:单端输入阻抗。

eq13
(13)

图6是带源电阻和终端电阻的电路。带50Ω源电阻的源开路电压为2Vp-p。当源用50Ω端接时,输入电压减小到1Vp-p,这个电压也是单位增益的差分输出电压。

source and termination resistances

图6:带源电阻和终端电阻的单端电路。

这个电路初看起来非常完整,但不匹配的61.5Ω电阻与50Ω的并联并增加到了上面的RG电阻,这就改变了增益和单端输入电阻,并且造成反馈系数失配。在低增益情况下,输入电阻的变化很小,暂时可以忽略,但反馈系数仍然必须匹配。解决这个问题的最简单方法是增加下面RG的阻值。图7是一种Thévenin等效电路,其中上方的并联组合用作源电阻。

thevenin equivalent

图7:输入源的Thévenin等效电路。

有了这种替代方案后,就可以将27.6Ω的电阻RTS增加到下面的环路中实现环路反馈系数的匹配,如图8所示。

balanced single-ended termination

图8:平衡的单端端接电路。



评论


相关推荐

技术专区

关闭