新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 高性能、多通道、同时采样ADC在数据采集系统(DAS)中的设计

高性能、多通道、同时采样ADC在数据采集系统(DAS)中的设计

作者:时间:2010-11-23来源:网络收藏

、多()中的

本文引用地址:http://www.eepw.com.cn/article/156926.htm

摘要:本文将帮助人员实现、多()。介绍了元器件的合理选择及其PCB布线,以优化性能。Maxim的MAX1308、MAX1320和MAX11046是极具特色的。本文给出的测试数据说明了遵循要点能够为系统带来的各项益处。

引言

很多先进的工业应用需要使用、多、同时采样,例如先进的电力线监控系统(图1)或现代三相电机控制系统(图2)。这些应用需要在大约70dB至90dB (取决于具体应用)较宽的动态范围内实现精确的多通道同时测量。通常要求16ksps甚至更高的采样速率。

MAX1308、MAX1320和MAX11046 器件在一个封装内集成了8个独立的同时采样输入通道和高速逐次逼近ADC。为了达到器件提供的规格并优化其性能,设计人员必须合理设计系统、选择元器件并提供合理的PCB布局。

DAS架构的典型示例

图1. 典型的电网监控应用
图1. 典型的电网监控应用

图1中每相电源通过一个电流变压器(CT)和一个电压变压器(PT)进行检测。整个系统包括四对此类结构(三相中的每相对应一对、零线对应一对)。

通过对同时采样并经过量化的数据进行数字处理计算,可以获取瞬时和平均有功功率、无功功率、视在功率以及功率因数。

图2. 典型的电机控制系统
图2. 典型的电机控制系统

图2中每个ADC同时采样输入信号,无需复杂的DSP计算,传统算法需要重新调整采样数据,将这些数据组合到同时采样数组。

影响工业系统(DAS)的主要噪声和干扰源

DAS定义了两类噪声/干扰。

第一类噪声源于内部电子元件,噪声源包括ADC的转换处理噪声和谐波失真、缓冲放大器的噪声和失真,以及基准噪声和稳定性。

第二类干扰来自于系统外部,包括外部电磁噪声、电源噪声/纹波、I/O口串扰以及数字系统噪声和干扰。

图3列出了不同的噪声源。

图3. 典型的电力线监控板级框图,图中显示了影响系统分辨率和精度的不同噪声源和干扰源。
图3. 典型的电力线监控板级框图,图中显示了影响系统分辨率和精度的不同噪声源和干扰源。

电力线DAS信号处理链路包含CT、PT测量变压器、抗混叠低通滤波器(LPF)、缓冲放大器、同时采样ADC和中央处理单元(CPU)。

同时采样ADC是系统的核心电路,用于测量调整在标准工业输入动态范围(如+5V、±5V或±10V)的电压和电流信号。MAX130x、MAX132x和MAX1104x及其衍生产品支持这些扩展测量范围,无需增加任何信号调理电路。

表1列出了这些器件的1 LSB数值和量化噪声,这些数值按照ADC的分辨率为设计人员提供了DAS能够容许的总噪声和干扰。

表1. 对应于ADC分辨率的量化值和量化噪声

ADC通道数分辨率VREF (V)LSB (mV)量化噪声(mV)SNR (dB)
MAX13088122.50.61040.176271
MAX13208142.50.15260.044076
MAX110468164.0960.06250.018085

ADC输入的总噪声和纹波应小于½ LSB,同时,量化噪声决定了系统的基本噪底。

注意:有些设计中,仅1mVRMS的总体噪声即可导致整个设计不达标,参考表2。

表2. 例:未经“校准”的整体噪声导致ADC精度下降
ADC通道数分辨率输入噪声造成的
分辨率损失(1mV)
下降后的
分辨率
MAX13088120.7111.3
MAX13208142.7111.3
MAX110468164.0012.0

元器件选择:DAS信号处理链路

选择正确的输入缓冲放大器

MAX130x和MAX132x系列ADC的输入电路具有相当低的阻抗,如图4所示。相应地,大多数应用中,这些器件需要一个输入缓冲器以便达到12位和14位精度。

图4. MAX130x和MAX132x系列ADC的典型输入电路
图4. MAX130x和MAX132x系列ADC的典型输入电路

为了达到12位至16位精度,选择放大器时需要考虑的关键因素是:适当的带宽、摆率、VP-P输出、低噪声、低失真和低失调。应保持尽可能低的缓冲放大器噪声—远远低于ADC的SNR。放大器的整体失调误差,包括漂移,在整个温度范围内都应小于所要求的精度误差。每个缓冲放大器应根据具体应用精心选择。

表3给出了几款推荐的高精度运算放大器。对于高精度ADC,不建议使用通用运放,请参考表4。

表3. 针对不同精度的ADC所推荐的高精度运放

型号电源单位增益
带宽(MHz)
摆率(V/µs)VP-P (V)失调
(mV,最大值)
噪声密度
(nV/√Hz)
说明
MAX410–MAX412±5V284.57.20.252.4适用于12位至16位分辨率
MAX4250+5V30.350.757.9适用于12位至14位分辨率

表4. 对于高精度ADC,不推荐使用通用运放
型号电源单位增益
带宽(MHz)
摆率(V/µs)VP-P (V)失调
(mV,最大值)
噪声密度
(nV/√Hz)
说明
LF411±15V415202.025适用于12位以下分辨率
LM124±15V1.20.5203.035适用于11位以下分辨率

输入滤波电路的要求:MAX11046系列

MAX11046系列器件采用差分输入结构,这种结构通常不需要输入缓冲放大器(图5)。MAX11046的有效输入阻抗ZIN与输入电容、采样频率有关:

ZIN = 1/(CIN × FSAMPLE)

式中,FSAMPLE为采样频率,CIN = 15pF。

随着采样频率的降低,输入阻抗将增大:

250ksps时为266kΩ
25ksps时为2.66MΩ

图5. MAX11046系列器件的简化输入电路
图5. MAX11046系列器件的简化输入电路

MAX11046系列产品具有极高的输入阻抗,可以直接与低阻传感器连接,例如,CT和PT测量变压器阻抗相对较低(10Ω至50Ω),因此,可以直接通过简单的低通滤波器连接到MAX11046输入级。

表5给出了低频应用,如电网监控或电机控制,所要求的最大RSOURCE设计值。

表5. 不同CEXTERNAL和FSAMPLE下的RSOURCE设计值

CEXTERNAL (pF)
FSAMPLE
(ksps)
010030010003000
RSOURCE (Ω)
10001.0E+063.3E+051.4E+054.7E+041.6E+04
25004.0E+051.3E+055.7E+041.9E+046.5E+03
50002.0E+056.6E+042.8E+049.4E+033.2E+03
100009.7E+043.2E+041.4E+044.6E+031.6E+03
250003.7E+041.2E+045.3E+031.8E+036.1E+02

为了保持DAS的精度,选择正确的RSOURCE和CEXTERNAL非常关键。

RSOURCE电阻必须为金属膜电阻,精度为1%或更高精度,还应具有较低的温度系数。建议选择一些知名厂商(如Panasonic®、ROHM®或Vishay®)提供的元件。

为了达到最佳效果,CEXTERNAL电容应选择陶瓷电容,推荐电介质类型为COG (NPO)。这些电容能够在较宽的温度和电压范围内保持其标称值,Kemet®、AVX®或Samsung®等公司可提供高性价比的SMT器件。

ADC基准选择

基准的选择对于整个DAS的性能非常重要,并且与ADC的分辨率和精度要求密切相关,如上述表1所示。在整个温度范围内保持合理的温漂和初始精度非常关键。

以MAX11046为例,1 LSB = 62.5µV。MAX11046内部基准的温漂为±10ppm/°C。在整个50°C温度范围内,基准漂移可达±500ppm或约±2.048mV (±33 LSB)。

在对温漂要求比较严格的应用中,最好使用外部低温漂基准,如MAX6341 (1ppm/°C)。1ppm/°C的电压基准在整个50°C范围内的漂移只有0.2mV (或±3 LSB)。MAX6341基准的初始精度为4.096 ±0.001,远远优于MAX11046的内部基准(4.096 ±0.0016),大大提高了DAS精度和温度稳定性。

使用外部基准时,MAX11046的基准输入电流仅为±10µA。串联型基准(如MAX6341)的输出电流可达10mA,因此,单个基准器件可以为多个高性能ADC提供参考,从而消除了不同器件之间的基准差异。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭