新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 船载通信天线系统的抗扰乱设计及应用

船载通信天线系统的抗扰乱设计及应用

作者:时间:2012-06-08来源:网络收藏

2.2 控制实现

本文引用地址:http://www.eepw.com.cn/article/154682.htm

  跟踪设备的三轴稳定控制采用测速机作为速度反馈,编码器作为位置反馈,并将船摇扰动经速率陀螺检测前馈于速度回路。工作原理框图如图2所示。

  

  图2中,K1W1为位置回路校正控制传递函数;K2W2为速度回路闭环传递函数,F(S)为补偿通道传递函数,传递函数为:

  

系统传递函数

  由式(8)可知:回路跟随能力是由项

由项决定

决定,而船摇扰动消除能力由项

船摇扰动消除能力

决定。从第二项可以看出消除船摇扰动的电机驱动角速度量由两部分组成,一是惯性空间中视轴被扰动的当前角速度(目标静止)。二是由补偿回路给出的当前时刻扰动量通过速度回路给出的电机驱动角速度。

  依据完全不变性原理,当(1+F(S)K2W2)ωf,即F(s)=-1/K2W2时,实现对船摇扰动的完全隔离,即满足这个条件时,不论扰动量ωf为多大,对输出无影响。可是,速度回路K2W2中含有积分环节、惯性环节、二阶环节,如果要实现完全的不变性,必然F(S)中要具有许多个微分环节,这样 F(S)的输出将充满噪声,使根本无法工作。但是实现局部的不变性是可能的。即用低阶微分代替高阶微分,并使其系数满足某种条件,从而满足精度的要求。

  实际使用中,合理选择前馈补偿系数,使前馈回路最大化的消除当前扰动,在此基础上结合环路的跟随能力,有效的消除视轴的偏差,实现高精度跟踪。因此,前馈回路起到粗调节的作用,而位置跟踪回路则可称为精调节。

  2.3 工程

  2.3.1 安装与测量

  采用3个速率陀螺测量出因船体摇摆引起的附加在方位轴、横倾轴和俯仰轴方向的速度,用于开环补偿。

  俯仰陀螺安装在方位转台上,敏感轴与的俯仰轴平行,陀螺随方位轴运动,敏感不到方位轴的旋转、俯仰轴的旋转、船体的航向速率等,它敏感的是船体的横摇、纵摇速率,如式(2)所示,可直接对俯仰轴进行开环前馈补偿。

  

直接对俯仰轴进行开环前馈补偿

  分析横倾轴的扰动(式(3))和方位轴的扰动(式(4)),无法用一只陀螺直接测量到,可用间接的方法获得。用2只陀螺分别测量cosAωy+s- inAωp和ωh,根据俯仰角E用数学的方法得到式(3)和式(4)。这样,测量ωh分量的速率陀螺安装在方位底座(不随方位轴转动),其敏感轴与方位轴平行,输出主要为船体的航向速率信息。测量cosAωy+sinAωp分量的速率陀螺安装在方位转盘上(随方位轴转动),其敏感轴与横倾轴平行。

  2.3.2 测试与分析

  某船载三轴控制系统采用抗扰动。在海上进行摇摆实验,在典型海况参数(摇摆振幅±6°,摇摆周期12s)下。天线指向卫星自跟踪,转动船的航向,使船升摇时测量俯仰轴的船摇隔离度。这时天线方位角转至90°或270°;测量横倾轴的船摇隔离度,使天线方位角转至0°或180°。隔离度测试结果如图 3所示。图中,曲线系列1表示加前馈跟踪数据;曲线系列2表示无前馈跟踪数据。测试结果为:船摇隔离度为46.4 dB;跟踪精度为0.031°。由以上数据分析,可以得出开环补偿方案完全满足系统的性能指标要求。

  

  3 结束语

  前馈补偿并未改变原闭环系统的极点和闭环零点。因此,不会影响系统的伺服带宽和稳定性。工程使用时融合了前馈补偿和反馈控制的,在保证功能、性能的同时,简化系统、提高设备的可靠性和使用寿命,实际使用效果显著。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭